PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Coupled action of ozone and UV radiation towards obtaining adipic acid from cyclohexane/one

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A lot of research is constantly underway in the world to develop new or improve the current processes of the chemical industry to make them more effective and environmentally friendly. The described research on the oxidation of cyclohexane or cyclohexanone to adipic acid with a coupled action of UV radiation and oxygen–ozone mixture, instead of the currently used oxidation with HNO3, is part of this trend. Gas chromatography was used to determine process indicators, such as cyclohexane conversion and selectivity to AA, which exceeded 50% at 25°C, after 16 h. This method can also be used for the preparation of other dicarboxylic acids from cycloalkanes, which proves its universal character.
Słowa kluczowe
Rocznik
Strony
97--101
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
  • Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Gliwice, Poland
  • Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Gliwice, Poland
Bibliografia
  • 1. Bart, J.C.J. & Cavallaro, S. (2015). Transiting from adipic acid to bioadipic acid. 1, Petroleum-based processes. Ind. Eng. Chem. Res. 54(1), 1–46. DOI: 10.1021/ie5020734.
  • 2. Bart, J.C.J. & Cavallaro, S. (2015). Transiting from adipic acid to bioadipic acid. Part II. Biosynthetic pathways. Ind. Eng. Chem. Res. 54(2), 567–576. DOI: 10.1021/ie502074d.
  • 3. Rios, J., Lebeau, J., Yang, T., Li, S. & Lynch, M.D. (2021). A critical review on the progress and challenges to a more sustainable, cost competitive synthesis of adipic acid. Green Chem. 23, 3172–3190. 10.1039/d1gc00638j.
  • 4. Abutaleb, A. & Ali, M.A. (2021). A comprehensive and updated review of studies on the oxidation of cyclohexane to produce ketone-alcohol (KA) oil. Rev. Chem. Eng. 38(7), 769–797. DOI: 10.1515/revce-2020-0059.
  • 5. Wang, T., She, Y., Fu, H. & Li, H. (2016). Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts. Catal. Today 264, 185–190. DOI: 10.1016/j.cattod.2015.07.034.
  • 6. Shen, H.M., Wang, X., Ning, L., Guo, A.B., Deng, J.H. & She, Y-B. (2021). Efficient oxidation of cycloalkanes with simultaneously increased conversion and selectivity using O2 catalyzed by metalloporphyrins and boosted by Zn(AcO)2: A practical strategy to inhibit the formation of aliphatic diacids. Appl. Catal. A–Gen. 609, DOI: 117904. 10.1016/j.apcata.2020.117904.
  • 7. Iwahama, T., Syojyo, K., Sakaguchi, S. & Ishii, Y. (1998). Direct conversion of cyclohexane into adipic acid with molecular oxygen catalyzed by N-hydroxyphthalimide combined with Mn(acac)2 and Co(OAc)2. Org. Proc. Res. Dev. 2(4), 255–260. DOI: 10.1021/op980016y.
  • 8. Gunchenko, P.A., Li, J., Liu, B., Chen, H., Pashenko, A.E., Bakhonsky, V.V., Zhuk, T.S. & Fokin, A.A. (2018). Aerobic oxidations with N-hydroxyphthalimide in trifluoroacetic acid. Mol. Catal. 447, 72–9. DOI: 10.1016/j.mcat.2017.12.017.
  • 9. Liang, F., Zhong, W., Xiang, L., Mao, L., Xu, Q., Kirk, S.R. & Yin, D. (2019). Synergistic hydrogen atom transfer with the active role of solvent: Preferred one-step aerobic oxidation of cyclohexane to adipic acid by N-hydroxyphthalimide. J. Catal. 378, 256–69. DOI: 10.1016/j.jcat.2019.08.042.
  • 10. Lisicki, D. & Orlińska, B. (2020). Oxidation of cycloalkanes catalysed by N-hydroxyimides in supercritical carbon dioxide. Chem. Pap. 74(2), 711–6. DOI: 10.1007/s11696-019-00937-0.
  • 11. Talik, G., Osial, A., Grymel, M. & Orlińska, B. (2020). N-Hydroxyphthalimide on a polystyrene support coated with Co(II)-containing ionic liquid as a new catalytic system for solvent-free ethylbenzene oxidation. Catalysts 10(12), 1367. DOI: 10.3390/catal10121367.
  • 12. Dobras, G., Kasperczyk, K., Jurczyk, S. & Orlińska, B. (2020). N-hydroxyphthalimide supported on silica coated with ionic liquids containing CoCl2 (SCILLs) as new catalytic system for solvent-free ethylbenzene oxidation. Catalysts 10(2), 252. DOI: 10.3390/catal10020252.
  • 13. Talik, G. & Orlińska, B. (2021). New evidence for the key role of hydrogen bonding between N-hydroxyphthalimide and halide ionic liquids in hydrocarbons oxidation. Chem. Cat. Chem. 13(21), 4578–90. DOI: 10.1002/cctc.202100990.
  • 14. Dobras, G., Sitko, M., Petroselli, M., Caruso, M., Cametti, M., Punta, C. & Orlińska, B. (2020). Solvent-free aerobic oxidation of ethylbenzene promoted by NHPI/Co(II) catalytic system: The key role of ionic liquids. Chem. Cat. Chem 12(1), 259–266. DOI: 10.1002/cctc.201901737.
  • 15. Bhanja, P., Ghosh, K., Islam, S.S., Patra, A.K., Islam, S.M. & Bhaumik, A. (2016). New hybrid iron phosphonate material as an efficient catalyst for the synthesis of adipic acid in air and water. ACS Sustainable Chem. Eng. 4(12), 7147–7157. DOI: 10.1021/acssuschemeng.6b02023.
  • 16. Nale, S.D., Rathod, P.V. & Jadhav, V.H. (2017). Manganese incorporated on glucose as an efficient catalyst for the synthesis of adipic acid using molecular O2 in aqueous medium. Appl. Catal. A–Gen. 546, 122–125. DOI: 10.1016/j.apcata.2017.08.008.
  • 17. Gao, X., Zhou, Y., Gu, J., Li, L. & Li, Y. (2019). Facile synthesis of hierarchical manganese-containing TS-1 and its application on the oxidation of cyclohexanone with molecular oxygen. Micropor. Mesopor. Mat. 275, 263–269. DOI: 10.1016/j.micromeso.2018.08.037.
  • 18. Zou, G., Zhong, W., Mao, L., Xu, Q., Xiao, J., Yin, D., Xiao, Z., Kirk, S.R. & Shu T. (2015). A non-nitric acid method of adipic acid synthesis: organic solvent- and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts. Green Chem. 17, 1884–1892. DOI: 10.1039/c4gc02333a.
  • 19. Lisicki, D. & Orlińska, B. (2018). Oxidation of cyclic ketones to dicarboxylic acids. Pol. J. Chem. Technol. 20(4), 102–107. DOI: 10.2478/pjct-2018-0061.
  • 20. Lisicki, D. & Orlińska, B. (2019). Patent PL 239347.
  • 21. Liu, G., Chen, M., Jin, X., Song, C., He, F. & Huang, Q. (2021). Combination of H3PW12O40-TiO2 catalysts for photo-thermal oxidation of cyclohexene to adipic acid by 30% H2O2. J. Environ. Chem. Eng. 9(4), 105422. DOI: 10.1016/j. jece.2021.105422.
  • 22. Jin, P., Wei, H., Zhou, L., Wei, D., Wen, Y., Zhao, B., Wang, X. & Li, B. (2021). Anderson-type polyoxometalate as excellent catalyst for green synthesis of adipic acid with hydrogen peroxide. Mol. Catal. 510, 111705. DOI: 10.1016/j.mcat.2021.111705.
  • 23. Soares, J.C.S., Gonçalves, A.H.A., Zotin, F.M.Z., de Araújo, L.R.R. & Gaspar, A.B. (2021). Influence of reactional parameters in the adipic acid synthesis from cyclohexene using heterogeneous polyoxometalates. Catal. Today 381, 143–53. DOI: 10.1016/j.cattod.2020.07.052.
  • 24. Peckh, K., Lisicki, D., Pabich, E. & Orlińska, B. (2022). Oxidation of 1,2-cyclohexanediol as a step for adipic acid synthesis. J. Ind. Eng. Chem. 110, 131–6. DOI: 10.1016/j.jiec.2022.02.053.
  • 25. Hwang, K.C. & Sagadevan, A. (2014). One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science, 346, 1495–98. DOI: 10.1126/science.1259684.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a148a602-f20a-4c44-b37d-6831fc3b3fb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.