PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High frequency oscillation analysis and suppression strategy of flexible direct current system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the high frequency oscillation (HFO) accidents caused by long link delay in modular multilevel converter-based high-voltage direct current (MMC-HVDC) transmission projects have posed new challenges to the safety and stability of power system operation. This paper adopts delay stability margin to measure the high frequency stability of the MMC-HVDC system and derives the state space model of the MMC-HVDC time-delay system considering the link delay. The Lyapunov direct method is extended to the stability analysis of the MMC-HVDC time-delay system and the delay stability margin of the system is solved based on the linear matrix inequality (LMI). Then the influence of the controller parameters on the delay stability margin of the MMC-HVDC system is analyzed. Based on improved Smith predictive compensation control, an HFO suppression strategy of the MMC-HVDC system is proposed to improve the high frequency stability of the system by equivalently reducing and eliminating the total link delay. The effectiveness of the Lyapunov direct method for solving the delay stability margin of the MMC-HVDC system and the superiority of the proposed HFO suppression strategy are verified by the time-domain simulation in PSCAD/EMTDC. The research provides a novel viewpoint for the study of the HFO and suppression strategy of the MMC-HVDC system.
Rocznik
Strony
315--335
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wz.
Twórcy
autor
  • School of Electrical and Information Engineering, Tianjin University, 92 Weijin Road Nankai District, Tianjin, China
  • School of Electrical and Information Engineering, Tianjin University, 92 Weijin Road Nankai District, Tianjin, China
autor
  • School of Electrical and Information Engineering, Tianjin University, 92 Weijin Road Nankai District, Tianjin, China
Bibliografia
  • [1] Jin H., Luo Y., Fan Y., Pan S., Improved carrier phase shift modulation and voltage equalization control strategy in modular multilevel converter, Archives of Electrical Engineering, vol. 68, no. 4, pp. 803–815 (2019), DOI: 10.24425/aee.2019.130684.
  • [2] Christoph B., Christian R., Andreas M., Jochen J., BorWin1 – First experiences with harmonic interactions in converter dominated grids, International ETG Congress 2015, Die Energiewende Blueprints for the new energy age, Bonn, Germany, pp. 1–7 (2015).
  • [3] Saad H., Fillion Y., Deschanvres S., Vernay Y., Dennetière S., On Resonances and Harmonics in HVDC-MMC Station Connected to AC Grid, IEEE Transactions on Power Delivery, vol. 32, no. 3, pp. 1565–1573 (2017), DOI: 10.1109/TPWRD.2017.2648887.
  • [4] Zou C., Rao H., Xu S., Li Y., Li W., Chen J., Zhao X., Analysis of Resonance Between a VSC-HVDC Converter and the AC Grid, IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10157–10168 (2018), DOI: 10.1109/TPEL.2018.2809705.
  • [5] Li Y., An T., Zhang D., Pei X., Ji K., Tang G., Analysis and Suppression Control of High Frequency Resonance for MMC-HVDC System, IEEE Transactions on Power Delivery, vol. 36, no. 6, pp. 3867–3881 (2021), DOI: 10.1109/TPWRD.2021.3049973.
  • [6] Li G., Ye H., Bin Z., High-frequency oscillation mechanism analysis of wind farm-side MMC station considering converter transformer stray capacitance, International Journal of Electrical Power & Energy Systems, vol. 153 (2023), DOI: 10.1016/j.ijepes.2023.109179.
  • [7] Tang J., Du X., Du C., Tong C., Research on the Suppression Strategies of High-frequency Oscillation for MMC-HVDC, 2021 IEEE 1st International Power Electronics and Application Symposium (PEAS), Shanghai, China, pp. 1–5 (2021), DOI: 10.1109/PEAS53589.2021.9628572.
  • [8] Yang S., Liu K., Qin L., Zhou T., Zhu S., Hong C., Research Progress of High frequency Oscillation in MMC-HVDC, vol. 47, no. 10, pp. 3485–3496 (2021), DOI: 10.13336/j.1003-6520.hve.20210940.
  • [9] Guo X., Liu Z., Li Y., Lu Y., Characteristic Analysis of High-frequency Resonance of Flexible High Voltage Direct Current and Research on Its Damping Control Strategy, Proceedings of the CSEE, vol. 40, no. 1, pp. 19–29+370 (2020).
  • [10] Feng J., Zou C., Yang S., Zhao X., Fu C., Impedance Modeling and Characteristic Analysis of flexible HVDC System for Medium and high frequency resonance, Proceedings of the CSEE, vol. 40, no. 15, pp. 4805–4820 (2020).
  • [11] Mohammad A., Marta M., Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods, IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 5014–5030 (2017), DOI: 10.1109/TIA.2017.2712692.
  • [12] Guo C., Peng Y., Xu L., Yang S., Hu Y., Analysis on High-frequency Oscillation Mechanism for MMC-HVDC System Considering Influence of Time Delay, Automation of Electric Power Systems Press, vol. 44, no. 22, pp. 119–126 (2020), DOI: 10.7500/AEPS20200509006.
  • [13] Li Y., He Z., Pang H., Yang X., Ji K., Huang W., High Frequency Stability Analysis and Suppression Strategy of MMC-HVDC Systems (Part I): Stability Analysis, Proceedings of the CSEE, vol. 41, no. 17, pp. 5842–5855 (2021).
  • [14] Wang F., Liu K., Zhu S., High-Frequency Resonance Analysis and Stabilization Control Strategy of MMC Based on Eigenvalue Method, IEEE Access, vol. 9, pp. 16305–16315 (2021), DOI: 10.1109/ACCESS.2021.3052991.
  • [15] Dong C., Jia H., Jiang Y., Time-delay Stability Criteria for Power System with Integral Quadratic Form, Automation of Electric Power Systems, vol. 39, no. 24, pp. 35–40 (2015), DOI: 10.7500/AEPS20150202015.
  • [16] Zhu J., Hu J., Lin L., Wang Y., Wei C., High-Frequency Oscillation Mechanism Analysis and Suppression Method of VSC-HVDC, IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 8892–8896 (2020), DOI: 10.1109/TPEL.2020.2975092.
  • [17] Li C., Liu Y., Li Y., He P., Fang Y., Sheng T., An approach to suppress low-frequency oscillation in the hybrid multi-Infeed HVDC of mixed H2/H∞ robust-based control theory, Archives of Electrical Engineering, vol. 71, no. 1, pp. 109–124 (2022), DOI: 10.24425/aee.2022.140200.
  • [18] Zhang F., Yao W., Zhang Z., High-frequency oscillation analysis and suppression strategy of MMC-HVDC system based on generalized eigenvalue, Electric Power Automation Equipment, vol. 42, no. 8, pp. 174–183 (2022).
  • [19] Smith O.J.M., Closer Control of Loops with Dead Time, Chemical Engineering Progress, vol. 53, no. 5, pp. 217–219 (1957).
  • [20] Teng N., Zhang J., Vacuum induction heating furnace temperature control system based on smith fuzzy-PID, 2014 International Conference on Mechatronics and Control (ICMC), Jinzhou, China, pp. 2207–2210 (2014), DOI: 10.1109/ICMC.2014.7231961.
  • [21] Kumar S., Modified smith predictor design for networked control system with time delay, 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India, pp. 1–5 (2015), DOI: 10.1109/EPETSG.2015.7510085.
  • [22] Luo Y., Xue W., He W., Nie K., Mao Y., Guerrero J.M., Delay-Compound-Compensation Control for Photoelectric Tracking System Based on Improved Smith Predictor Scheme, IEEE Photonics Journal, vol. 14, no. 3, pp. 1–8 (2022), DOI: 10.1109/JPHOT.2022.3164202.
  • [23] Zhang H., Liao X., Li X., Yu J., LMI-based approach for stability analysis of fuzzy large-scale system with time delays, 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914), Chengdu, China, pp. 1401–1405 (2004), DOI: 10.1109/ICCCAS.2004.1346437.
  • [24] Jia H., Stability of Power System with Time Delays, Bei Jing: Science Press (2016).
  • [25] Zhang X., Xia D., Fu Z., Wang G., Xu D., An Improved Feedforward Control Method Considering PLL Dynamics to Improve Weak Grid Stability of Grid-Connected Inverters, IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 5143–5151 (2018), DOI: 10.1109/TIA.2018.2811718.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a147653e-c1b9-433d-be20-5bcd95fa52be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.