Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the classical problems in transportation planning is represented minimizing the maximal delivery time of a uniform commodity between sources and destinations, known as the Bottleneck Transportation Problem (BTP). It assumes that a fixed transportation time – independent of the quantity of the transported commodity – is assigned to each source-to-destination route. In some cases, however, the quantity of the transported commodity may affect the transportation time, e.g., because of the duration of loading/unloading the commodity to/from the vehicle. Extensions of the BTP as well as the closely related Total Time Minimization Transportation Problem (TTMTP) which include the linear time-quantity dependence of the delivery time are considered. Whereas similar optimization problems known in the literature are nonlinear, linear programming is used in this research. Linear optimization provides better performance of the optimization software in comparison with nonlinear optimization. The above fact is illustrated by improving solutions to the problems known in the literature. A detailed insight into the issue of the existence of integer optimal solutions and interpretations of optimal solutions is also provided.
Rocznik
Tom
Strony
95--114
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
- Faculty of Management, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
- Faculty of Technology, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic
Bibliografia
- 1. Tolstoi A. N. 1930. „Metody nakhozhdenyianaimenshego summovogo kilometrazha pri planirovanii perevosok b prostranstve”. Planirovanie Perevozok 1: 23-55. [In Russian: “Methods of finding the minimum total kilometrage in cargo transportation planning in space”. Transportation Planning]. Russia, Moscow: TransPress of the National Commissariat of Transportation.
- 2. Kantorovich Leonid Vitalyevich. 1940. „A new method of solving some classes of extremal problems”. Doklady Akademii Nauk SSSR 28: 211-214.
- 3. Hitchcock Frank Lauren. 1940. „The Distribution of a Product from Several Sources to Numerous Localities”. Journal of Mathematics and Physics 20: 224-230. ISSN: 1467-9590. DOI: 10.1002/sapm1941201224.
- 4. Dantzig George B. 1951. „Application of the Simplex Method to a Transportation problem”. In: Activity Analysis of Production and Allocation, edited by Koopmans T.C.: 359-373. USA: John Wiley and Sons, New York.
- 5. Charnes Abraham, William W. Cooper. 1954. „The Stepping Stone Method of Explaining Linear Programming Calculations in Transportation Problems”. Management Science 1(1): 49-69. ISSN: 0025-1909. DOI: 10.1287/mnsc.1.1.49.
- 6. Reinfeld Nyles Vernon, William R. Vogel. 1958. Mathematical Programming. New Jersey: Prentice-Hall Englewood Cliffs.
- 7. Dantzig George B. 1963. Linear Programming and Extensions. New Jersey, Princeton: Princeton University Press.
- 8. Shih Wei. 2007. „Modified Stepping-Stone method as a teaching aid for capacitated transportation problems”. Decision Sciences 18(4): 662-676. ISSN: 0011-7315. DOI: 10.1111/j.1540-5915.1987.tb01553.x.
- 9. Babu Md. Ashraful, Md. Abu Helal, Mohammad Sazzad Hasan, Utpal Kanti Das. 2013. „Lowest Allocation Method (LAM): A New Approach to Obtain Feasible Solution of Transportation Model”. International Journal of Scientific & Engineering Research 4(11): 1344-1348. ISSN: 2347-3878.
- 10. Shimshak Daniel G., James Alan Kaslik, Thomas Barclay. 1981. „A Modification of Vogel’s Approximation Method through the Use of Heuristic”. Information System and Operational Research (INFOR) 19: 259-263. DOI: 10.1080/03155986.1981.11731827.
- 11. Balakrishnan Nagraj. 1990. „Modified Vogel’s Approximation Method for Unbalanced Transportation Problem”. Applied Mathematics Letters 3(2): 9-11. ISSN: 0893-9659. DOI: 10.1016/0893-9659(90)90003-T.
- 12. Alkubaisi Muwafaq. 2015. „Modified Vogel Method to Find Initial Basic Feasible Solution (IBFS) – Introducing a New Methodology to Find Best IBFS”. Business and Management Research 4(2): 22-36. ISSN: 1927-6001. DOI: 10.5430/bmr.v4n2p22.
- 13. Soomro Abdul Sattar, Muhammad Junaid, Gurudeo Anand Tularam. 2015. „Modified Vogel’s Approximation Method for Solving Transportation Problems”. Mathematical Theory and Modeling 5(4): 32-42. ISSN: 2224-5804.
- 14. Alam Teg, Rupesh Rastogi. 2011. „Transportation Problem: Extensions and Methods: An Overview”. VSRD-International Journal of Business & Management Research 1(2): 121-126. ISSN: 2319-2194.
- 15. Barsov A.S. 1959. What is Linear Programming? In 1964 from the 1st Russian ed. (1959) by Michael B.P. Slater, Daniel A. Levine. Prepared by the Survey of Recent East European Mathematical Literature. Boston, Heath.
- 16. Nesterov Evgenii Pavlovich. 1962. Transportnaya zadacha lineynogo programmirovaniya. Tranzheldorizdat, Moscow. P. 59-65. [In Russian: “Transportation Problems in Linear Programming”].
- 17. Grabowski Wiesław. 1964. „Problem of transportation in minimum time”. Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques (BAPMAM) 12: 107-108. ISSN: 0001-4117.
- 18. Grabowski Wiesław. 1964. „Transportation problems with minimal time”. Przegląd Statystyczny 11: 3-33.
- 19. Szwarc Włodzimierz. 1966. „The Time Transportation Problem”. Zastosowania Matematyki 8: 231-242.
- 20. Szwarc Włodzimierz. 1971. „Some Remarks on the Time Transportation Problem”. Naval Research Logistics Quarterly 18(4): 473-485. ISSN: 0894-069X. DOI: 10.1002/nav.3800180405.
- 21. Hammer Peter L. 1969. „Time-minimizing transportation problems”. Naval Research Logistics Quarterly 16(3): 345-357. ISSN: 0894-069X. DOI: 10.1002/nav.3800160307.
- 22. Garfinkel Robert S., M. Ramesh. Rao 1971. „The bottleneck transportation problem”. Naval Research Logistics Quarterly 18(4): 465-472. ISSN: 0894-069X. DOI: 10.1002/nav.3800180404.
- 23. Sharma Jai Kishan, Kanti Swarup. 1977. „Time minimizing transportation problem”. Proceedings of the Indian Academy of Sciences – Section A (Mathematical Sciences) 86: 513-518. ISSN: 0973-7685. DOI: 10.1007/BF03046907.
- 24. Bhatia Harish Lal, Kanti Swarup, M.C. Puri. 1977. „A procedure for time minimization transportation problem”. Indian Journal of Pure and Applied Mathematics 8(8): 920-929. ISSN: 0019-5588.
- 25. Seshan Chidambaram Ramachandran, Vishwanath Gajanan Tikekar. 1980. „On Sharma-Swarup algorithm for time minimizing transportation problems”. Proceedings of the Indian Academy of Sciences – Section A (Mathematical Sciences) 89: 101-102. ISSN: 0973-7685. DOI: 10.1007/BF02837265.
- 26. Issermann Heinz. 1984. „Linear bottleneck transportation problem”. Asia Pacific Journal of Operational Research 1: 38-52. ISSN: 0217-5959.
- 27. Frieze Anthony M. 1975. „Bottleneck linear programming”. Journal of the Operational Research Society 26(4): 871-874. ISSN: 0160-5682. DOI: 10.1057/jors.1975.179.
- 28. Dearing Perino M., F.C. Newruck 1979. „A Capacitated Bottleneck Facility Location Problem”. Management Science 25(11): 1093-1104. ISSN: 0025-1909. DOI: 10.1287/mnsc.25.11.1093.
- 29. Gupta Kavita, Shri Ram Arora. 2013. „Bottleneck capacitated transportation problem with bounds on rim conditions”. OPSEARCH 50(4): 491-503. ISSN: 0030-3887. DOI: 10.1007/s12597-013-0125-6.
- 30. Agarwal Swati, Shambhu Sharma. 2018. „A Minimax Method for Transportation Problem with Mixed Constraints”. International Journal of Computer & Mathematical Sciences 7(3): 1-6. ISSN: 2347-8527.
- 31. Pandian Pa. Shanthi, Geethanjali Natarajan. 2011. „A New Method for Solving Bottleneck-Cost Transportation Problems”. International Mathematical Forum 6(10): 451-460. ISSN: 1312-7594.
- 32. Xie Fanrong, Yuchen Jia, Renan Jia. 2012. „Duration and cost optimization for transportation problem”. International Journal on Advances in Information Sciences and Service Sciences 4(6): 219-233. ISSN: 1976-3700. DOI: 10.4156/AISS.vol4.issue6.26.
- 33. Charnsethikul Peerayuth, Saeree Svetasreni. 2007. „The Constrained Bottleneck Transportation Problem”. Journal of Mathematics and Statistics 3(1): 24-27. ISSN: 1549-3644. DOI: 10.3844/jmssp.2007.24.27.
- 34. Achary K.K., C.R. Seshan 1981. „A time minimising transportation problem with quantity dependent time”. European Journal of Operational Research 7(3): 290-298. ISSN: 0377-2217. DOI: 10.1016/0377-2217(81)90187-7.
- 35. Małachowski Jerzy, Józef Żurek, Jarosław Ziółkowski, Aleksandra Lęgas. 2019. „Application of the Transport Problem from the Criterion of Time to Optimize Supply Network with Products „Fast-Running””. Journal of KONBiN 49(4): 127-137. ISSN: 1895-8281. DOI: 10.2478/jok-2019-0079.
- 36. Ziółkowski Jarosław, Aleksandra Lęgas, Elżbieta Szymczyk, Jerzy Małachowski, Mateusz Oszczypała, Joanna Szkutnik-Rogoż. 2022. „Optimization of the Delivery Time within the Distribution Network Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere”. Energies 15(14): 5198. ISSN: 1996-1073. DOI: 10.3390/en15145198.
- 37. Nechitaylo Nikolay Mikhailovich. 2021. „A Type of Transportation Problem to be Solved Following the Time Criterion and Considering Vehicle Features”. World of Transport and Transportation 19(3): 74-80. ISSN: 1992-3252. DOI: 10.30932/1992-3252-2021-19-3-8.
- 38. Nikolić Ilija. 2007. „Total time minimizing transportation problem”. Yugoslav Journal of Operations Research 17(1): 125-133. ISSN: 0354-0243. DOI: 10.2298/YJOR0701125N.
- 39. Bansal S., M. C. Puri 1980. „A min-max problem”. Zeitschrift für Operations Research 24: 191-200. ISSN: 0340-9422. DOI: 10.1007/BF01919246.
- 40. Fisk John, Patrick G. McKeown. 1979. „The pure fixed charge transportation problem. Naval Research Logistics Quarterly 26(4): 631-641. ISSN: 0894-069X. DOI: 10.1002/nav.3800260408.
- 41. Zhu Pengfei, Guangting Chen, Yong Chen, An Zhang. 2025. „On the pure fixed charge transportation problem”. Discrete Optimization 55(C): 100875. ISSN: 1572-5286. DOI: 10.1016/j.disopt.2024.100875.
- 42. Hirsch Warren M., George B. Dantzig. 1968. „The fixed charge problem”. Naval Research Logistics Quarterly 15(3): 413-424. ISSN: 0894-069X. DOI: 10.1002/nav.3800150306.
- 43. Mason Andrew J. 2012. „OpenSolver – An Open Source Add-in to Solve Linear and Integer Progammes in Excel”. Operations Research Proceedings 2011: 401-406. Springer: Berlin/Heidelberg, Germany. ISBN: 978-3-642-29209-5. DOI: 10.1007/978-3-642-29210-1_64.
- 44. Kozłowski Edward, Piotr Wiśniowski, Maciej Gis, Magdalena Zimakowska-Laskowska, Anna Borucka. 2024. „Vehicle Acceleration and Speed as Factors Determining Energy Consumption in Electric Vehicles”. Energies 17(16): 4051. ISSN: 1996-1073. DOI: 10.3390/en17164051.
- 45. Kozłowski Edward, Anna Borucka, Piotr Oleszczuk, Norbert Leszczyński. 2024. „Evaluation of Readiness of the Technical System Using the Semi-Markov Model with Selected Sojourn Time Distributions”. Eksploatacja i Niezawodność – Maintenance and Reliability 26(4). ISSN: 1507-2711. DOI: 10.17531/ein/191545.
- 46. Justiani Sally, Budhi S. Wibowo. 2022. „The Economic and Environmental Benefits of Collaborative Pick-Up in Urban Delivery Systems”. LOGI – Scientific Journal on Transport and Logistics 13(1): 245-256. ISSN: 2336-3037. DOI: 10.2478/logi-2022-0022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1446461-3acc-4088-a04e-92fac22e6392
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.