PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric analysis of the efficiency of the combined gas-steam turbine unit of a hybrid cycle for the FPSO vessel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A thermal diagram of the combined gas‒steam turbine unit of a hybrid cycle, which is an energy complex consisting of a base gas turbine engine with a steam turbine heat recovery circuit and a steam-injected gas turbine operating with overexpansion, is proposed. A mathematical model of a power plant has been developed, taking into consideration the features of thermodynamic processes of simple, binary, and steam-injected gas‒steam cycles. Thermodynamic investigations and optimization of the parameters of a combined installation of a hybrid cycle for the generation of electrical energy have been carried out. Three-dimensional calculations of the combustion chamber of a steam-injected gas turbine were carried out, which confirmed the low emissions of the main toxic components.
Słowa kluczowe
Rocznik
Tom
Strony
122--132
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Geroes of Ukraine, 54025 Mikolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Geroes of Ukraine, 54025 Mikolayiv, Ukraine
autor
  • Gdańsk University of Technology, Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Kehlhofer R. Combined-cycle gas and steam turbine power plants. Penn Well Publishing Co. 1997;388.
  • 2. Carcasci C., Pacifici B.,Winchler L., Cosi L., Ferraro R. Thermoeconomic Analysis of a One-Pressure Level Heat Recovery Steam Generator Considering Real Steam Turbine Cost. Energy Procedia 2015; 82:591-598.
  • 3. Nirbito W., Arif Budiyanto M., Muliadi R. Performance Analysis of Combined Cycle with Air Breathing Derivative Gas Turbine, Heat Recovery Steam Generator, and Steam Turbine as LNG Tanker Main Engine Propulsion System. J. Mar. Sci. Eng. 2020; 8(726):1-15.
  • 4. Matveev I.B., Serbin S.I., Washchilenko V.N. Plasmaassisted treatment of sewage sludge. IEEE Trans. Plasma Sci. 2016; 44(12):3023-3027.
  • 5. Cheng D.Y., Nelson, A.L.C. The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. Proceeding of ASME Turbo Expo 2002, Amsterdam, GT-2002-30119. 2002;1-8.
  • 6. Bondin Y.N., Krivutsa V.A., Movchan S.N., Romanov V.I., Kolomeev V.N., Shevtsov A.P. Operation experience of a gas turbine unit GPU-16K with steam injection. Gas Turbine Technologies 2004; 5:18-20 (in Russian).
  • 7. Movchan S.N., Romanov V.V., Chobenko V.N., Shevtsov A.P. Contact Steam-and-Gas Turbine Units of the “AQUARIUS” Type: The Present Status and Future Prospects. Conference: ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2009;1-7.
  • 8. Romanovsky G.F., Washchilenko N.V., Serbin S.I. Theoretical bases of designing ship gas turbine units. Ukrainian State Maritime Technical University. 2003 (in Ukrainian).
  • 9. Offshore Magazine. Leadon FPSO delivered on time, complete, within budget. 2002. https://www.offshore-mag.com/production/article/16759844/leadon-fpso-delivered-on-time-complete-within-budget.
  • 10. Cherednichenko O., Serbin S., Dzida M. Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units. Polish Maritime Research 2019; 3(103):181‒187.
  • 11. Ocyan. FPSO Cidade de Itajaí. 2017. https://api.ocyan-sa.com/sites/default/files/2018-09/cidade_do_itajai_0.pdf.
  • 12. Offshore Technology. Triton Oil Field, North Sea Central. 2018. https://www.offshore-technology.com/projects/triton/.
  • 13. Gas Turbine Engine UGT25000, https://zmturbines.com/en/serial-production/engines/ugt-25000/.
  • 14. Gas Turbine World. 2004-05 GTW Handbook, Pequot Publishing Inc., 2006.
  • 15. Serbin S.I., Kozlovskyi A.V., Burunsuz K.S. Investigations of non-stationary processes in low emissive gas turbine combustor with plasma assistance. IEEE Trans. Plasma Sci. 2016; 44(12):2960-2964.
  • 16. Matveev I.B., Serbin S.I., Vilkul V.V., Goncharova N.A. Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System. IEEE Trans. Plasma Sci. 2015; 43(12):3974-3978.
  • 17. Matveev I., Serbin S., Mostipanenko A. Numerical optimization of the “Tornado” combustor aerodynamic parameters. Collection of Technical Papers. 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, AIAA 2007-391. 2007; 7:4744-4755.
  • 18. Magnussen B.F., Hjertager B.H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. 16th Int. Symp. on Combustion. The Combustion Institute. 1976; 16(1):719-729.
  • 19. 19. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence. London: Academic Press; 1972.
  • 20. Serbin S.I., Matveev I.B. Theoretical and experimental investigations of the plasma-assisted combustion and reformation system. IEEE Trans. Plasma Sci. 2010; 38(12):3306-3312.
  • 21. Serbin S.I., Matveev I.B., Goncharova N.A. Plasma assisted reforming of natural gas for GTL. Part I. IEEE Trans. Plasma Sci. 2014; 42(12):3896-3900.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a143c146-e90d-4c5d-a2d5-be5eba1f53f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.