PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of LSTM model with multi-step ahead strategies for a short-term traffic flow prediction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of direct and recursive multi-step forecasting strategies on the short-term traffic flow forecast performance of the Long Short-Term Memory (LSTM) model is investigated. To increase the reliability of the results, analyses are carried out with various traffic flow data sets. In addition, databases are clustered using the k-means++ algorithm to reduce the number of experiments. Analyses are performed for different time periods. Thus, the contribution of strategies to LSTM was examined in detail. The results of the recursive based strategy performances are not satisfactory. However, different versions of the direct strategy performed better at different time periods. This research makes an important contribution to clarifying the compatibility of LSTM and forecasting strategies. Thus, more efficient traffic flow prediction models will be developed and systems such as Intelligent Transportation System (ITS) will work more efficiently. A practical implication for researchers that forecasting strategies should be selected based on time periods.
Rocznik
Tom
Strony
15--31
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Department of Civil Engineering, Engineering Faculty, Kırıkkale University, Yahşihan,71451, Kırıkkale, Turkey
Bibliografia
  • 1. Ahmed M.S., A.R. Cook. 1979. "Analysis of Freeway Traffic Time-Series Data by Using Box-Jenkins Techniques". Transportation Research Record. DOI: 10.3141/2024-03.
  • 2. Nagel K., M. Schreckenberg. 1992. "A cellular automaton model for freeway traffic". Journal de Physique I. DOI: 10.1051/jp1:1992277.
  • 3. Cremer M. 1995. "On the calculation of individual travel times by macroscopic models". Pacific Rim TransTech Conference. Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. A Ride into the Future. IEEE; 1995. P. 187-193. DOI: 10.1109/VNIS.1995.518837.
  • 4. Williams B.M. 2001. "Multivariate vehicular traffic flow prediction: Evaluation of ARIMAX modeling". Transportation Research Record. DOI: 10.3141/1776-25.
  • 5. Wu C.H., J.M. Ho, D.T. Lee. 2004. "Travel-Time Prediction With Support Vector Regression". IEEE Transactions on Intelligent Transportation Systems 5(4): 276-281. DOI: 10.1109/TITS.2004.837813.
  • 6. Audu Akeem A., Olufemi F. Iyiola, Ayobami A. Popoola, Bamiji M. Adeleye, Samuel Medayese, Choene Mosima, Nunyi Blamah. 2021. "The application of geographic information system as an intelligent system towards emergency responses in road traffic accident in Ibadan". Journal of Transport and Supply Chain Management 15(a546): 1-17. ISSN 2310-8789.
  • 7. Paľo Jozef, Ondrej Stopka. 2021. "On-Site Traffic Management Evaluation and Proposals to Improve Safety of Access to Workplaces". Communications 23(3): A125-A136. University of Zilina.
  • 8. Hossan Sakhawat, Naushin Nower. 2020. "Fog-based dynamic traffic light control system for improving public transport". Public Transport 12: 431-454.
  • 9. Danilevičius Algimantas, Marijonas Bogdevičius, Modesta Gusarovienė, Gediminas Vaičiūnas, Robertas Pečeliūnas, Irena Danilevičienė. 2018. “Determination of Optimal Traffic Light Period Using a Discrete Traffic Flow Model”. Mechanika 24(6): 845-851.
  • 10. Pranevičius Henrikas, Tadas Kraujalis. 2012. "Knowledge based traffic signal control model for signalized intersection". Transport 27(3): 263-267.
  • 11. Zhong M., S. Sharma, P. Lingras. 2005. "Short-Term Traffic Prediction on Different Types of Roads with Genetically Designed Regression and Time Delay Neural Network Models". Journal of Computing in Civil Engineering 19(1): 94-103. DOI: 10.1061/(ASCE)0887-3801(2005)19:1(94).
  • 12. Smith B.L., B.M. Williams, R. Keith Oswald, R.K. Oswald. 2002. "Comparison of parametric and nonparametric models for traffic flow forecasting". Transportation Research Part C: Emerging Technologies 10(4): 303-321. DOI: 10.1016/S0968-090X(02)00009-8.
  • 13. Kamarianakis Y., P. Prastacos. 2003. "Forecasting Traffic Flow Conditions in an Urban Network: Comparison of Multivariate and Univariate Approaches". Transportation Research Record 1857(1): 74-84. DOI: 10.3141/1857-09.
  • 14. Kumar B. Anil, Vivek Kumar, Lelitha Vanajakshi, Shankar C. Subramanian. 2017. "Performance Comparison of Data Driven and Less Data Demanding Techniques for Bus Travel Time Prediction". European Transport \ Trasporti Europei 65(9): 1-17. ISSN 1825-3997.
  • 15. Hochreiter S., J. Schmidhuber. 1997. "Long Short-Term Memory". Neural Computation 9(8): 1735-1780. MIT Press Journals. DOI: 10.1162/neco.1997.9.8.1735.
  • 16. Fu R., Z. Zhang, L. Li. 2016. "Using LSTM and GRU neural network methods for traffic flow prediction". 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE. P. 324-328.
  • 17. Luo X., D. Li, Y. Yang, S. Zhang. 2019. "Spatiotemporal traffic flow prediction with KNN and LSTM". Journal of Advanced Transportation. Hindawi.
  • 18. Yang B., S. Sun, J. Li, X. Lin, Y. Tian. 2019. "Traffic flow prediction using LSTM with feature enhancement". Neurocomputing 332: 320-327. Elsevier B.V. DOI: 10.1016/j.neucom.2018.12.016.
  • 19. Mou L., P. Zhao, H. Xie, Y. Chen. 2019. "T-LSTM: A Long Short-Term Memory Neural Network Enhanced by Temporal Information for Traffic Flow Prediction". IEEE Access 7: 98053-98060. DOI: 10.1109/ACCESS.2019.2929692.
  • 20. Li Z., G. Xiong, Y. Chen, Y. Lv, B. Hu, F. Zhu, et al. 2019. "A Hybrid Deep Learning Approach with GCN and LSTM for Traffic Flow Prediction". IEEE Intelligent Transportation Systems Conference (ITSC). P. 1929-1933. DOI: 10.1109/ITSC.2019.8916778.
  • 21. Ben Taieb S., G. Bontempi, A.F. Atiya, A. Sorjamaa. 2012. "A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition". Expert Systems with Applications 39(8): 7067-7083. Elsevier Ltd. DOI: 10.1016/j.eswa.2012.01.039.
  • 22. Du P., J. Wang, W. Yang, T. Niu. 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system". Renewable Energy 122: 533-550. DOI: https://doi.org/10.1016/j.renene.2018.01.113.
  • 23. Papacharalampous G., H. Tyralis, D. Koutsoyiannis. 2019. "Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes". Stochastic environmental research and risk assessment 33(2): 481-514. Springer.
  • 24. Wang J., J. Heng, L. Xiao, C. Wang. 2017. "Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting". Energy 125: 591-613. DOI: https://doi.org/10.1016/j.energy.2017.02.150.
  • 25. Guermoui M., F. Melgani, C. Danilo. 2018. "Multi-step ahead forecasting of daily global and direct solar radiation: a review and case study of Ghardaia region". Journal of Cleaner Production 201: 716-734. Elsevier.
  • 26. Wang D., H. Luo, O. Grunder, Y. Lin, H. Guo. 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm". Applied Energy 190: 390-407. Elsevier.
  • 27. Xue P., Y. Jiang, Z. Zhou, X. Chen, X. Fang, J. Liu. 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms". Energy 188: 116085. DOI: https://doi.org/10.1016/j.energy.2019.116085.
  • 28. Ojeda L.L., A.Y. Kibangou, C.C. Wit. 2013. "Adaptive Kalman filtering for multi-step ahead traffic flow prediction". American Control Conference. P. 4724-4729.
  • 29. Zhang Y., Y. Zhang, A. Haghani. 2014. "A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model". Transportation Research Part C: Emerging Technologies 43: 65-78. DOI: 10.1016/j.trc.2013.11.011.
  • 30. Zhan X., S. Zhang, W.Y. Szeto, X.M. Chen. 2018. „Multi-step-ahead traffic flow forecasting using multi-output gradient boosting regression tree”. Transportation Research Board 97th Annual Meeting. Washington DC, United States. 2018-1-7 to 2018-1-11.
  • 31. Jain A.K. 2010. "Data clustering: 50 years beyond K-means". Pattern Recognition Letters 31(8): 651-666. DOI: 10.1016/j.patrec.2009.09.011.
  • 32. Arthur D., S. Vassilvitskii. 2007. „k-means++: The advantages of careful seeding”. SODA '07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. P. 1027-1035. Stanford.
  • 33. Arima C., K. Hakamada, M. Okamoto, T. Hanai. 2008. "Modified fuzzy gap statistic for estimating preferable number of clusters in fuzzy k-means clustering". Journal of bioscience and bioengineering 105(3): 273-281. Elsevier.
  • 34. Song X., Y. Liu, L. Xue, J. Wang, J. Zhang, J. Wang, et al. 2020. "Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model". Journal of Petroleum Science and Engineering 186: 106682. Elsevier.
  • 35. Ben Taieb S., G. Bontempi, A.F. Atiya, A. Sorjamaa, S. Ben Taieb, G. Bontempi, et al. 2012. "A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition". Expert systems with applications 39(8): 7067-7083. Elsevier. DOI: 10.1016/j.eswa.2012.01.039.
  • 36. Chang L.C., M.Z.M. Amin, S.N. Yang, F.J. Chang. 2018. "Building ANN-based regional multi-step-ahead flood inundation forecast models". Water 10(9): 1283. Multidisciplinary Digital Publishing Institute.
  • 37. Zhan X., S. Zhang, W.Y. Szeto, X. Chen. 2019. "Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree". Journal of Intelligent Transportation Systems. P: 1-17. Taylor & Francis.
  • 38. Tran V.T., B.S. Yang, A.C.C. Tan. 2009. "Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems". Expert Systems with Applications 36(5): 9378-9387. DOI: https://doi.org/10.1016/j.eswa.2009.01.007.
  • 39. Sorjamaa A., A. Lendasse. 2006. "Time series prediction using DirRec strategy". Esann. P. 143-148.
  • 40. Sorjamaa A., J. Hao, N. Reyhani, Y. Ji, A. Lendasse. 2007. "Methodology for long-term prediction of time series". Neurocomputing 70(16-18): 2861-2869. Elsevier.
  • 41. PeMS. PeMS Data Clearinghouse. Available at: http://pems.dot.ca.gov/?dnode=Clearinghouse.
  • 42. Mydhili S.K., S. Periyanayagi, S. Baskar, P.M. Shakeel, P.R. Hariharan. 2019. "Machine learning based multi scale parallel K-means++ clustering for cloud assisted internet of things". Peer-to-Peer Networking and Applications. P. 1-13. Springer.
  • 43. Qiu X., Y. Zhang. 2019. "A Traffic Speed Imputation Method Based on Self-adaption and Clustering". IEEE 4th International Conference on Big Data Analytics (ICBDA). P. 26-31. IEEE.
  • 44. Sharma D., K. Thulasiraman, D. Wu, J.N. Jiang. 2019. "A network science-based k-means++ clustering method for power systems network equivalence". Computational Social Networks 6(1): 4. Springer.
  • 45. Lalle Y., M. Abdelhafidh, L.C. Fourati, J. Rezgui. 2019. "A hybrid optimization algorithm based on K-means++ and Multi-objective Chaotic Ant Swarm Optimization for WSN in pipeline monitoring". 15th International Wireless Communications & Mobile Computing Conference (IWCMC). P. 1929-1934. IEEE.
  • 46. Davies L., U. Gather. 1993. "The identification of multiple outliers". Journal of the American Statistical Association 88(423): 782-792. DOI: 10.1080/01621459.1993.10476339.
  • 47. Caliński T., J. Harabasz. 1974. "A dendrite method for cluster analysis". Communications in Statistics-theory and Methods 3(1): 1-27. Taylor & Francis.
  • 48. Tibshirani R., G. Walther, T. Hastie. 2001. "Estimating the number of clusters in a data set via the gap statistic". Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(2): 411-423. Blackwell Publishers Ltd. DOI: 10.1111/1467-9868.00293.
  • 49. Rousseeuw P.J. 1987. "Silhouettes: a graphical aid to the interpretation and validation of cluster analysis". Journal of computational and applied mathematics 20: 53-65. North-Holland.
  • 50. MathWorks®. Gap Value. Available at: https://www.mathworks.com/help/stats/clustering.evaluation.gapevaluation-class.html.
  • 51. Kingma D.P., J. Ba. 2014. Adam: A method for stochastic optimization. Computer Science, Mathematics. arXiv preprint arXiv:1412.6980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a13e3357-43b2-4c79-85ae-915b71e04e2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.