Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of a complex analysis referring to the possibilities of applying different types of construction of forging dies used on a hydraulic hammer Lasco HO-U 160 in order to select the optimal solution in the aspect of obtaining the required dimension-shape accuracy. The analysis involved the use of the numerical simulation software FORGE 3.0 NxT. 12 different variants were analyzed, of both different tool constructions and detail arrangements on the die (in a quadruple and sixfold system). The effect of the forces as well as the way of material flow and degree of the forging tool seat’s filling were verified. The most ergonomic and technologically justified detail arrangement on the die was described. The results of the numerical simulation analyses were presented with the indication of the pros and cons of the particular solutions. The selected solution of the forging tool construction, implemented in a mass production, was especially discussed to verify of obtained FEM results and improvement actual technology.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1215--1229
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology, Metal Forming, Welding and Metrology, 5 Lukasiewicza Str., 50-371, Wrocław, Poland
autor
- Wroclaw University of Science and Technology, Metal Forming, Welding and Metrology, 5 Lukasiewicza Str., 50-371, Wrocław, Poland
autor
- Forge, Schraner Polska, 21 G Lotnicza Str., 99-100 Łęczyca, Schraner, Polska
autor
- Wroclaw University of Science and Technology, Metal Forming, Welding and Metrology, 5 Lukasiewicza Str., 50-371, Wrocław, Poland
- Forge, Schraner Polska, 21 G Lotnicza Str., 99-100 Łęczyca, Schraner, Polska
autor
- Wroclaw University of Science and Technology, Metal Forming, Welding and Metrology, 5 Lukasiewicza Str., 50-371, Wrocław, Poland
autor
- Wroclaw University of Science and Technology, Metal Forming, Welding and Metrology, 5 Lukasiewicza Str., 50-371, Wrocław, Poland
Bibliografia
- [1] Z. Gronostajski, M. Hawryluk, The main aspects of precision forging. Arch. Civil Mech. Eng. 8 (2), 39-55 (2008). DOI: https://doi.org/10.1016/S1644-9665(12)60192-7
- [2] R. Davis Joseph, S.L. Semiatin, ASM Metals Handbook 14, Forming and Forging. American Society for Metals, ASM (1989).
- [3] T. Altan, Cold and hot forging fundamentals and application. ASM Internation, Ohio (2005).
- [4] H.A. Kuhn, K.L. Ferguson, Powder forging. Metal Powder Industries Federation (1990).
- [5] Z. Gronostajski, M. Kaszuba, M. Hawryluk, M. Zwierzchowski, A review of the degradation mechanisms of the hot forging tools. Arch. Civil Mech. Eng. 14 (4), 528-539 (2014). DOI: https://doi.org/10.1016/j.acme.2014.07.002
- [6] Z. Gronostajski, M. Hawryluk, J. Jakubik, M. Kaszuba, G. Misun, P. Sadowski, M. Kaszuba, Solution examples of selected issues related to die forging. Arch. Metall. Mater. 60 (4), 2767-2775 (2016). DOI: https://doi.org/10.1515/amm-2015-0446
- [7] Ibrahim Abd Al-Kareem Ahmed, Adnan Ibrahim Mohammed, Munir Ahmed Allow, Improvement of forging die life by failure mechanism analysis. J. Mech. Behav. Mater. 30, 309-317 (2021). DOI: https://doi.org/10.1515/jmbm-2021-0034
- [8] V. Seriacopi, N.K. Fukumasu, R.M. Souza, I.F. Machado, Finite element analysis of the effects of thermo-mechanical loadings on a tool steel microstructure. Eng. Fail. Anal. 97, 383-398 (2019). DOI: https://doi.org/10.1016/j.engfailanal.2019.01.006
- [9] H. Saiki, Y. Marumo, A. Minami, T. Sanoi, Effect of the Surface structure on the resistance to plastic deformation of a hot forging tool. J. Mater. Process. Technol. 113, 22-27 (2001). DOI: https://doi.org/10.1016/S0924-0136(01)00632-X
- [10] S. Sharma, M. Sharma, V. Gupta, J. Singh, A systematic review of factors affecting the process parameters and various measurement techniques in forging processes. Surf. Rev. Lett. 94 (5), 2200529 (2023). DOI: https://doi.org/10.1002/srin.202200529
- [11] Z. Pater, G. Samołyk, Fundamentals of metal forming technology. 2013 Lublin University of Technology, Faculty of Mechanical Engineering, Poland.
- [12] C. Choi, A. Groseclose, T. Altan, Estimation of plastic deformation and abrasive wear in warm forging dies, J. Mater. Process. Technol. 212, 1742-1752 (2012). DOI: https://doi.org/10.1016/j.jmatprotec.2012.03.023
- [13] A. Persson, S. Hogmarkb, J. Bergstroma, Thermal fatigue cracking of surface engineered hot work tool steels. Surf. Coat. Technol. 191, 216-227 (2005). DOI: https://doi.org/10.1016/j.surfcoat.2004.04.053
- [14] M. Hawryluk, M. Rychlik, An implementation of robotization for the chosen hot die forging process. Arch. Civil Mech. Eng. 22 (3), 119 (2022). DOI: https://doi.org/10.1007/s43452-022-00448-y
- [15] J. Pacanowski, Zasady projektowania technologii kucia odkuwek matrycowych o kształtach kołowo-symetrycznych. Wydawnictwo Politechnika Świętokrzyska (2021).
- [16] Z. Pater, G. Samołyk, Fundamentals of metal forming technology. Lublin University of Technology. Faculty of Mechanical Engineering (2013).
- [17] M. Šraml, J. Stupan, C.I. Potr, J. Kramberger, Computer-aided analysis of the forging process. Int. J. Adv. Manuf. Technol. 23, 161-168 (2004). DOI: https://doi.org/10.1007/s00170-003-1578-1
- [18] R. Neugebauer, H. Bräunlich, S. Scheffler, Process monitoring and closed loop-controlled process. Arch. Civil Mech. Eng. 9 (2), 105-126 (2009). DOI: https://doi.org/10.1016/S1644-9665(12)60063-6
- [19] Y.C. Lin, D.D. Chen, M.S. Chen, X.M. Chen, J. Li, A precise BP neural network-based online model predictive control strategy for die forging hydraulic press machine. Neural Comput. Appl. 29, 585 (2018). DOI: https://doi.org/10.1007/s00521-016-2556-5
- [20] Jolgaf, A.M.S. Hamouda, S. Sulaiman, M.M. Hamdan, Development of a CAD/CAM system for the closed-die forging process. J. Mater. Process. Technol. 138 (1-3), 436-442 (2003). DOI: https://doi.org/10.1016/S0924-0136(03)00113-4
- [21] N. Srinivasan, A. Ramakrishnan, N. Venugopal Rao, N. Swamy, Cae for forging of titanium alloy aero-engine disc and integration with CAD-CAM for fabrication of the dies. J. Mater. Process. Technol. 124 (3), 353-359 (2002). DOI: https://doi.org/10.1016/S0924-0136(02)00221-2
- [22] S.Y. Li, S.Y. Cheng, Design optimization for cold forging by an integrated methodology of CAD/FEM/ANN. Adv. Mater. Res. 97-101, 3281-3284 (2010). DOI: 10.4028/www.scientific.net/AMR.97-101.3281
- [23] M. Kawka, T. Kakita, A. Makinouchi, Simulation of multi-step sheet metal forming processes by a static explicit FEM code. J. Mater. Process. Technol. 80-81, 54-59 (1998). DOI: https://doi.org/10.1016/S0924-0136(98)00133-2
- [24] http://www.transvalor.com/en/cmspages/forge-nxt.32.html
- [25] M. Hawryluk, J. Jakubik, Analysis of forging defects for selected industrial die forging processes. Eng. Fail. Anal. 59, 396-409 (2016). DOI: https://doi.org/10.1016/j.engfailanal.2015.11.008
- [26] ISO GPS 10360-4:2000 Geometrical Product Specifications (GPS) - Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM) - Part 4: CMMs used in Scanning Measuring Mode. Norm.
- [27] M. Hawryluk, J. Ziemba, M. Zwierzchowski, M. Janik, Analysis of a forging die wear by 3D reverse scanning combined with SEM and hardness tests. Wear 476, 203749 (2021). DOI: https://doi.org/10.1016/j.wear.2021.203749
- [28] Wei Zhang, Yanfei Gao, Zhili Feng, Xin Wang, Siyu Zhang, Lan Huang, Zaiwang Huang, Liang Jiang, Ductility limit diagrams for superplasticity and forging of high temperature polycrystalline materials. Acta Mater. 194, 378-386 (2020). DOI: https://doi.org/10.1016/j.actamat.2020.04.050
- [29] A. Loyda, L.A. Reyes, G.M. Hernández-Muñoz, F.A. García-Castillo, P. Zambrano-Robledo, Influence of the incremental deformation during rotary forging on the microstructure behaviour of a nickel-based superalloy. Int. J. Adv. Manuf. Technol. 97, 2383-2396 (2018). DOI: https://doi.org/10.1007/s00170-018-2105-8
- [30] M. Shirgaokar, Cold and Hot Forging: Fundamentals and Applications, Chapter 9: Methods of Analysis for Forging Operations, (2005). DOI: https://doi.org/10.31399/asm.tb.chffa.t51040091
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a13b1f7d-26c5-4674-ae31-4c53f7aaf816
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.