PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Expansion of Explosive Molecular Crystals: Anisotropy and Molecular Stacking

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Molecular dynamics simulations of three typical explosive crystals, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 1,1-diamino-2,2- dinitroethene (FOX-7) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), were carried out under NPT ensemble and selected force field. The equilibrium structures at elevated temperatures were obtained, which show that the stacking behaviour of the molecules does not change with temperature. The coefficient of thermal expansion (CTE) values were calculated by linear fitting methods, and the results show that the CTE values are close to the experimental results and are anisotropic. The total energies of the cells expanding along each single crystallographic axis were calculated by the periodic density functional theory method, indicating that the energy change rates are anisotropic, and correlation equations of the energy change vs. CTE values were established. The essence of the anisotropy of the explosive crystal’s thermal expansion was compared and elucidated.
Rocznik
Strony
59--81
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
Bibliografia
  • [1] Akhavan J., The Chemistry of Explosives, The Royal Society of Chemistry, Cambridge, 2004.
  • [2] Hsueh C.H., Becher P.F., Thermal Stresses Due to Thermal Expansion Anisotropy in Materials with Preferred Orientation, J. Mater. Sci. Lett., 1991, 19(10), 1165- 1167.
  • [3] McGrane S.D., Grieco A., Ramos K.J., Hooks D.E., Moore D.S., Femtosecond Micromachining of Internal Voids in High Explosive Crystals for Studies of Hot Spot Initiation, J. Appl. Phys., 2009, 105(7), 7.
  • [4] Boas W., Honeycombe R.W.K., The Anisotropy of Thermal Expansion as a Cause of Deformation in Metals and Alloys, Proc. R. Soc. London, Ser. A, 1947, 188(1015), 427-439.
  • [5] McCrone W.C., Crystallographic Data: Cyclotetramethylene Tetranitramine, Anal. Chem., 1950, 22, 1225.
  • [6] Cady H.H., Larson A.C., Cromer D.T., The Crystal Structure of α-HMX and a Refinement of the Structure of β-HMX, Acta Crystallogr., 1963, 16, 617.
  • [7] Latypov N.V., Bergman J., Langlet A., Wellmar U., Bemm U., Synthesis and Reactions of 1,1-Diamino2,2-dinitroethylene, Tetrahedron, 1998, 54, 11525-11536.
  • [8] Bemm U., Östmark H., 1,1-Diamino-2,2-dinitroethylene: a Novel Energetic Material with Infinite Layers in Two Dimensions, Acta Crystallogr., 1998, 54, 1997-1999.
  • [9] Boddu V.M., Viswanath D.S., Ghosh T.K., Damavarapu R., 2,4,6-Triamino-1,3,5- trinitrobenzene (TATB) and TATB-based Formulations − A Review, J. Hazard. Mater., 2010, 181, 1-8.
  • [10] Memorandum from Prospect, UK MOD position statement, January, 2006, 23.
  • [11] Albright D., South Africa and the Affordable Bomb, Bull. At. Sci., 1994, 50(4), 37-47.
  • [12] How Safe is Safe? Bull. At. Sci., 1991, 47(3), 35-40.
  • [13] Weese R.K., Burnham A.K., Coefficient of Thermal Expansion of the Beta and Delta Polymorphs of HMX, Propellants Explos. Pyrotech., 2005, 30(5), 344-350.
  • [14] Hermann M., Engel W., Eisenreich N., Thermal Expansion, Transitions, Sensitivities and Burning Rates of HMX, Propellants Explos. Pyrotech., 1992, 17, 190.
  • [15] Hermann M., Engel W., Eisenreich N., Thermal Analysis of the Phases of HMX Using X-ray Diffraction, Zeitschriff fur Kristallographie, 1993, 204, 121.
  • [16] Saw C.K., Kinetics of HMX and Phase Transitions: Effects of Grain Size at Elevated Temperature, Lawrence Livermore National Laboratory (LLNL), June 13, 2002, UCRL-JC-145228.
  • [17] Xue Ch., Sun J., Kang B., Liu Y., Liu X., Song G., Xue G., The β-δ-Phase Transition and Thermal Expansion of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine, Propellants Explos. Pyrotech., 2010, 35(4), 333-338.
  • [18] Deschamps J., Frish M., Parrish D., Thermal Expansion of HMX, J. Chem. Crystallogr., 2011, 41(7), 966-970.
  • [19] Weeks B.L., Ruddle C.M., Zaug J.M., Cook D.J., Monitoring High-temperature Solid-solid Phase Transitions of HMX with Atomic Force Microscopy, Ultramicroscopy, 2002, 93(1), 19-23.
  • [20] Suhithi M., Chak P., Maija M., et al, Equation of State and Structural Changes in Diaminodinitroethylene from Experimental Studies and ab initio Quantum Calculations, Proc., Symp. Detonation, 12th, San Diego, California, 2002.
  • [21] Kempa P.B., Herrmann M., Molina-Metzger F.J., Thome V., Phase Transitions of FOX-7 Studied by X-ray Diffraction and Thermal Analysis, 35th Int. Annu. Conf. ICT, 2004.
  • [22] Burnham A.K., Weese R.K., Wang R., Kwok Q.S.M., Jones D.E.G., Thermal Properties of FOX-7, 36th Int. Annu. Conf. ICT & 32nd Int. Pyrotechnics Seminar, Karlsruhe, Germany, 2005.
  • [23] Burnham A.K., Weese R.K., Wang R., Kwok Q.S.M., Jones D.E.G., Solid-solid Phase Transition Kinetics of FOX-7, 2005 NATAS Annu. Conf., Universal City, CA, United States, 2005.
  • [24] a: Crawford M.-J., Evers J., Göbel M., Klapötke T.M., Mayer P., Oehlinger G., Welch J.M., γ-FOX-7: Structure of a High Energy Density Material Immediately Prior to Decomposition, Propellants Explos. Pyrotech., 2007, 32(6), 478-495; b: Evers J., Klapötke T.M., Mayer P. et al, α-and β-FOX-7, Polymorphs of a High Energy Density Material, Studied by X-ray Single Crystal and Powder Investigations in the Temperature Range from 200 to 423 K, Inorg. Chem., 2006, 45(13), 4996-5007.
  • [25] Kolb J.R., Rizzo H.F., Growth of 2,4,6-Trinitro-1,3,5-trinitrobenzene (TATB) I. Anisotropic Thermal Expansion, Propellants Explos. Pyrotech., 1979, 4, 10-16.
  • [26] Sun J., Kang B., Xue C., Liu Y., Xia Y.X., Liu X.F., Zhang W., Crystal State of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) Undergoing Thermal Cycling Process, J. Energ. Mater., 2010, 28(3), 189-201.
  • [27] Bedrov D., Ayyagari C., Smith G.D., Swell T.D., Menikoff R., Zaug J.M., Molecular Dynamics Simulation Study of HMX Crystal Polymorphs Using a Flexible Molecule Force Field, J. Comput. -Aided Mater. Des., 2001, 8, 77.
  • [28] Conroy M.W., Oleynik I.I., Zybin S.V., White C.T., First-principles Anisotropic Constitutive Relationships in beta-Cyclotetramethylene Tetranitramine (beta- HMX), J. Appl. Phys., 2008, 104, 053506.
  • [29] Lu L.Y., Wei D.Q., Chen X.R., Ji G.F., Wang X.J., Chang J., Zhang Q.M., Gong Z.Z., The Pressure-induced Phase Transition of the Solid β–HMX, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 2009, 107(22), 2373-2385.
  • [30] Zhu W.H., Huang H., Huang H.J., Xiao H.M., Initial Chemical Events in Shocked Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: A New Initiation Decomposition Mechanism, J. Chem. Phys., 2012, 136, 044516.
  • [31] Zhou T.T., Zybin S.V., Liu Y., Huang F.L., Goddard W.A., Anisotropic Shock Sensitivity for β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine Energetic Material under Compressive-shear Loading from ReaxFF-lg Reactive Dynamics Simulations, J. Appl. Phys., 2012, 111, 124904.
  • [32] Sorescu D.C., Boatz J.A., Thompson D.L., Classical and Quantum-mechanical Studies of Crystalline FOX-7 (1,1-Diamino-2,2-dinitroethylene), J. Phys. Chem. A, 2001, 105(20), 5010-5021.
  • [33] Taylor D.E., Rob F.R., Betsy M., Podeszwa R., Szalewicz K., A Molecular Dynamics Study of 1,1-Diamino-2,2-dinitroethylene (FOX-7) Crystal Using a Symmetry Adapted Perturbation Theory-based Intermolecular Force Field, Phys. Chem. Chem. Phys., 2011, 13(37), 16629-16636.
  • [34] Bedrov D., Borodin O., Smith G.D., Sewell T.D., Dattelbaum D.M., Stevens L.L., A Molecular Dynamics Simulation Study of Crystalline 1,3,5-Triamino-2,4,6- trinitrobenzene as a Function of Pressure and Temperature, J. Chem. Phys., 2009, 131, 224703.
  • [35] Gee R.H., Roszak S., Balasubramanian K., Fried L.E., Ab initio Based Force Field and Molecular Dynamics Simulations of Crystalline TATB, J. Chem. Phys., 2004, 120, 7059–7066.
  • [36] Accelrys Software Inc., Materials Studio Release Notes, Release 6.0, San Diego: Accelrys Software Inc., 2011.
  • [37] Choi C.S., Boutin H.P., A Study of the Crystal Structure of β-Cyclotetramethylene Tetranitramine by Neutron Diffraction, Acta Crystallogr., 1970, 26, 1235-1240.
  • [38] Gilardi R., Cambridge Crystallographic Data Centre, CCDC 127539, 1999.
  • [39] Cady H.H., Larson A.C., The Crystal Structure of 2,4,6-Triamino-1,3,5- trinitrobenzene, Acta Crystallogr., 1965, 18, 485-496.
  • [40] Verlet L., Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 1967, 159, 98-103.
  • [41] Ewald P.P., Die Berechnung Optischer und Elektrostatischer Gitterpotentiale (The Calculation of Optical and Electrostatic Lattice Potentials), Ann. Phys. Leipzig, 1921, 64, 253.
  • [42] Karasawa N., Goddard W.A., Acceleration of Convergence for Lattice Sums, J. Phys. Chem., 1989, 93, 7320-7327.
  • [43] Andersen H.C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Phys. Chem., 1980, 72, 2384.
  • [44] Parrinello M., Rahman A., Polymorphic Transitions in Single Crystals: a New Molecular Dynamics Method, J. Appl. Phys., 1981, 52, 7182-7190.
  • [45] Sun H., Mumby S.J., Maple J.R., Hagler A.T., An ab initio CFF93 All-atom Forcefield for Polycarbonates, J. Am. Chem. Soc., 1994, 116, 2978-2987.
  • [46] Sun H., Ab initio Calculations and Forcefield Development for Computer Simulation of Polysilanes, Macromolecules, 1995, 28, 701.
  • [47] Sun H., Rigby D., Polysiloxanes: ab initio Forcefield and Structural, Conformational and Thermophysical Properties, Spectrochim. Acta, Part A, 1997, 53, 1301-1323.
  • [48] Sun H., COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications, J. Phys. Chem. B., 1998, 102(38), 7338-7364.
  • [49] Mayo S.L., Olafson B.D., Goddard W.A. III. DREIDING: A Generic Forcefield, J. Phys. Chem., 1990, 94, 8897-8909.
  • [50] Rosen J.M., Dickinson C., Vapor Pressures and Heats of Sublimation of Some High Melting Organic Explosives, J. Chem. Eng. Data, 1969, 14, 120-124.
  • [51] Politzer P., Concha M.C., Grice M.E., Murray J.S., Lane P., Computational Investigation of the Structures and Relative Stabilities of Amino/nitro Derivatives of Ethylene, J. Mol. Struct. (THEOCHEM), 1998, 452, 75-83.
  • [52] Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C., First-principles Simulation: Ideas, Illustrations, and the CASTEP Code, J. Phys.: Condensed Mater., 2002, 14(11), 2717-2743.
  • [53] Vanderbilt D., Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, 1990, 41, 7892-7895.
  • [54] Ceperley D.M., Alder B.J., Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, 45, 566-569.
  • [55] Perdew J.P., Zunger A., Self-interaction Correction to Density-functional Approximations for Many-electron Systems, Phys. Rev. B, 1981, 23, 5048-5079.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a136e9a2-e594-4d40-8fe7-af9ff1f0ffef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.