PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of bisphenol a from aqueous solutionsby activated tyre pyrolysis char – Effect of physicaland chemical activation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to show the effect of activation method of tyre pyrolysis char (TPC) on adsorptionof bisphenol A (BPA) from aqueous solutions. The TPC was produced from end-of-life-tyres (ELT)feedstock in a pilot plant at 773 K. Activation was accomplished using two classical methods: physicalactivation with CO2and chemical activation with KOH. The two produced adsorbents had pores rangingfrom micro- to macropores. Distinct differences in the BET surface areas and pore volumes betweenthe adsorbents were displayed showing better performance of the chemically activated adsorbent foradsorption of BPA from water.The results of the kinetic studies showed that the adsorption of BPA followed pseudo-second-orderkinetic model. The Freundlich, Langmuir, Langmuir–Freundlich and Redlich–Peterson isotherm equa-tions were used for description of the adsorption data. The Langmuir–Freundlich isotherm model bestfits the experimental data for the BPA adsorption on both adsorbents. The Langmuir–Freundlichmonolayer adsorption capacity,qmLF, obtained for the CO2-activated tyre pyrolysis char (AP-CO2)and KOH-activated tyre pyrolysis char (AP-KOH) were 0.473 and 0.969 mmol g
Rocznik
Strony
129–--141
Opis fizyczny
Bibliogr. 55 poz., tab., rys.
Twórcy
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry,ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry,ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Abbasi S., Foroutan R., Esmaeili H., Esmaeilzadeh F., 2019. Preparation of activated carbon from worn tires for removal of Cu(II), Ni(II) and Co(II) ions from synthetic wastewater. Desalin. Water Treat., 141, 269–278. DOI: 10.5004/dwt.2019.23569.
  • 2. Acevedo B., Barriocanal C., Lupul I., Gryglewicz G., 2015. Properties and performance of mesoporous activated carbons from scrap tyres, bituminous wastes and coal. Fuel, 151, 83–90. DOI: 10.1016/j.fuel.2015.01.010.
  • 3. Acosta R., Nabarlatz D., Sánchez-Sánchez A., Jagiello J., Gadonneix P., Celzard A., Fierro V., 2018. Adsorption of bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng., 6, 823–833. DOI: 10.1016/j.jece.2018. 01.002.
  • 4. Alves A.C.F., Antero R.V.P., Oliveira S.B., Ojala S.A., Scalize P.S., 2019. Activated carbon produced from waste coffee grounds for an effective removal of bisphenol-A in aqueous medium. Environ. Sci. Pollut. Res., 26, 24850– 24862. DOI: 10.1007/s11356-019-05717-7.
  • 5. Antero R.V.P., Alves A.C.F., Paulo Sales P.T.F., Oliveira S.B., Ojala S.A., Brum S.S., 2019. A new approach to obtain mesoporous-activated carbon via hydrothermal carbonization of Brazilian Cerrado biomass combined with physical activation for bisphenol – A removal. Chem. Eng. Commun., 206, 1498–1514. DOI: 10.1080/00986445.2019. 1601625.
  • 6. Antoniou N., Stavropoulos G., Zabaniotou A., 2014. Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system. Renew. Sustain. Energy Rev., 39, 1053–1073. DOI: 10.1016/j.rser.2014.07.143.
  • 7. Antoniou N., Zabaniotou A., 2015. Experimental proof of concept for a sustainable End of Life Tyres pyrolysis with energy and porous materials production. J. Clean. Prod., 101, 1–14. DOI: 10.1016/j.jclepro.2015.03.101.
  • 8. Antoniou N., Zabaniotou A., 2018. Re-designing a viable ELTs depolymerization in circular economy: Pyrolysis prototype demonstration at TRL 7, with energy optimization and carbonaceous materials production. J. Clean. Prod., 174, 74–86. DOI: 10.1016/j.jclepro.2017.10.319.
  • 9. Ayawei N., Ebelegi A.N., Wankasi D., 2017. Modelling and interpretation of adsorption isotherms. J. Chem., 2017, Article ID 3039817. DOI: 10.1155/2017/3039817.
  • 10. Bhatnagar A., Anastopoulos I., 2017. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere, 168, 885–902. DOI: 10.1016/j.chemosphere.2016.10.121.
  • 11. Condon J.B., 2020. Surface area and porosity determinations by physisorption. Measurement, Classical theories and quantum theory. Elsevier B.V., Amsterdam. Council of the European Communities, 1991.
  • 12. Council Directive 91/156/EEC of 18 March 1991 amending Directive 75/442/EEC on Waste. Off. J. Eur. Communities L 078, 0032–0037.
  • 13. Council of the European Communities, 1999. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off. J. Eur. Communities L 182, 0001–0019.
  • 14. Daraei H., Mittal A., 2017. Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater. Desalin. Water Treat., 90, 294–298. DOI:10.5004/dwt.2017. 21344.
  • 15. Doczekalska B., Pawlicka A., Kuśmierek K., Światkowski A., Bartkowiak M., 2017. Adsorption of 4-chlorophenol from aqueous solution on activated carbons derived from hornbeam wood. Wood Res., 62, 261–272.
  • 16. ETRMA, 2019. ELT Management figures 2017.
  • 17. Gupta V.K., Gupta B., Rastogi A., Agarwal S., Nayak A., 2011. Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res., 45, 4047–4055. DOI: 10.1016/j.watres.2011.05.016.
  • 18. Helleur R., Popovic N., Ikura M., Stanciulescu M., Liu D., 2001. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. J. Anal. Appl. Pyrolysis, 58–59, 813–824. DOI: 10.1016/S0165- 2370(00)00207-2.
  • 19. Heo J., Yoon Y., Lee G., Kim Y., Han J., Park C.M., 2019. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour. Technol., 281, 179–187. DOI: 10.1016/j.biortech. 2019.02.091.
  • 20. Im J., Löffler F.E., 2016. Fate of bisphenol A in terrestrial and aquatic environments. Environ. Sci. Technol., 50, 8403–8416. DOI: 10.1021/acs.est.6b00877.
  • 21. Juhola R., Runtti H., Kangas T., Hu T., Romar H., Tuomikoski S., 2020. Bisphenol A removal from water by biomass-based carbon: isotherms, kinetics and thermodynamics studies, Environ. Technol., 41, 971–980. DOI: 10.1080/09593330.2018.1515990.
  • 22. Kotkowski T., Cherbański R., Molga E., 2018. Acetone adsorption on CO2-activated tyre pyrolysis char – Thermogravimetric analysis, Chem. Process Eng., 39, 233–246. DOI: 10.24425/122946.
  • 23. Kotkowski T., Cherbański, Molga E., 2020. Tyre-derived activated carbon – textural properties and modelling of adsorption equilibrium of n-hexane. Chem. Process Eng., 41, 25–44. DOI: 10.24425/cpe.2019.130221.
  • 24. Kuśmierek K., Świ ˛atkowski A., Kotkowski T., Cherbański R., Molga E., 2020a. Adsorption properties of activated tire pyrolysis chars for phenol and chlorophenols.Chem. Eng. Technol., 43, 770–780. DOI: 10.1002/ceat.201900574.
  • 25. Kuśmierek K., Świ ˛atkowski A., Kotkowski T., Cherbański R., Molga E., 2020b. Application of activated tire pyrolysis chars for the removal of selected herbicides from aqueous solutions. Przem. Chem., 99 (6), 905–910. DOI: 10.15199/62.2020.6.15.
  • 26. Li S.-Q.Q., Yao Q., Wen S.-E.E., Chi Y., Yan J.-H.H., 2005. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires. J. Air Waste Manage. Assoc., 55, 1315–1326. DOI: 10.1080/10473289. 2005.10464728.
  • 27. Li Y., Jin F., Wang C., Chen Y., Wang Q., Zhang W., Wang D., 2015. Modification of bentonite with cationic surfactant for the enhanced retention of bisphenol A from landfill leachate. Environ. Sci. Pollut. Res., 22, 8618– 8628. DOI: 10.1007/s11356-014-4068-0.
  • 28. Lian F., Huang F., Chen W., Xing B., Zhu L., 2011. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environ. Pollut., 159, 850–857. DOI: 10.1016/j.envpol.2011. 01.002.
  • 29. Liang L., Zhang J., Feng P., Li C., Huang Y., Dong B., Li L., Guan X., 2015. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Front. Environ. Sci. Eng., 9, 1, 16–38. DOI: 10.1007/s11783-014-0697-2.
  • 30. Lorenc-Grabowska E., Diez M.A., Gryglewicz G., 2016. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons. J. Colloid Interf. Sci., 469, 205–212. DOI: 10.1016/j.jcis.2016.02.007.
  • 31. Luo Y., Street J., Steele P., Entsminger E., Guda, V., 2016. Activated carbon derived from pyrolyzed pinewood char using elevated temperature, KOH, H3PO4, and H2O2. BioResources, 11, 10433-10447. DOI: 10.15376/biores. 11.4.10433-10447.
  • 32. Makrigianni V., Giannakas A., Bairamis F., Papadaki M., Konstaninou I., 2017. Adsorption of Cr(VI) from aqueous solutions by HNO3-purified and chemically activated pyrolytic tire char. J. Dispers. Sci. Technol., 38, 992–1002. DOI: 10.1080/01932691.2016.1216862.
  • 33. Manirajah K., Sukumaran S.V., Abdullah N., Razak H.A., Ainirazali N., 2019. Evaluation of low cost-activated carbon produced from waste tyres pyrolysis for removal of 2-chlorophenol. Bull. Chem. React. Eng. Catal., 14, 443–449. DOI: 10.9767/bcrec.14.2.3617.443-449.
  • 34. Marsh H., Yan D.S., O’Grady T.M., Wennerberg A., 1984. Formation of active carbons from cokes using potassium hydroxide. Carbon, 22, 603–611. DOI: 10.1016/0008-6223(84)90096-4.
  • 35. Michałowicz J., 2014. Bisphenol A – Sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol., 37, 738–758. DOI: 10.1016/j.etap.2014.02.003.
  • 36. Moreno-Castilla C., 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42, 83–94. DOI: 10.1016/j.carbon.2003.09.022.
  • 37. Mui E.L.K.K., Ko D.C.K.K., McKay G., 2004. Production of active carbons from waste tyres – A review. Carbon, 42, 2789–2805. DOI: 10.1016/j.carbon.2004.06.023.
  • 38. Ortiz-Martínez K., Reddy P., Cabrera-Lafaurie W.A., Román F.R., Hernández-Maldonado A.J., 2016. Single and multi-component adsorptive removal of bisphenol A and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganicorganic pillared clay composites: effect of pH and presence of humic acid. J. Hazard. Mater., 312, 262–271. DOI: 10.1016/j.jhazmat.2016.03.073.
  • 39. Rouquerol J., Llewellyn P., Rouquerol F., 2007. Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal., 160, 49–56. DOI: 10.1016/S0167-2991(07)80008-5.
  • 40. Saleh T.A., Gupta V.K., Al-Saadi A.A., 2013. Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. J. Colloid Interface Sci., 396, 264–269. DOI: 10.1016/j.jcis.2013.01.037.
  • 41. San Miguel G., Fowler G.D., Sollars C.J., 2002. Adsorption of organic compounds from solution by activated carbons produced from waste tyre rubber. Sep. Sci. Technol., 37, 663–676. DOI: 10.1081/SS-120001453.
  • 42. San Miguel G., Fowler G.D., Sollars C.J., 2003. A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon, 41, 1009–1016. DOI: 10.1016/S0008- 6223(02)00449-9.
  • 43. Senin R.M., Ion I., Ion A.C., 2018a. A sorption study of bisphenol A in aqueous solutions on pristine and oxidized multi-walled carbon nanotubes. Pol. J. Environ. Stud., 27, 2245–2257. DOI: 10.15244/pjoes/78677.
  • 44. Senin R.M., Ion I., Oprea O., Vasile B., Stoica R., Ganea R., Ion A.C., 2018b. Sorption of bisphenol A (BPA) in aqueous solutions on fullerene C60. Rev. Chim., 69, 1309–1314. DOI: 10.37358/RC.18.6.6316.
  • 45. Shaid M.S.H.M., Zaini M.A.A., Nasri N.S., 2019. Isotherm, kinetics and thermodynamics of methylene blue dye adsorption onto CO2-activated pyrolysis tyre powder. Desalin. Water Treat., 143, 323–332. DOI: 10.5004/dwt.2019. 23565.
  • 46. Sharma V.K., Mincarini M., Fortuna F., Cognini F., Cornacchia G., 1998. Disposal of waste tyres for energy recovery and safe environment — Review. Energy Convers. Manage., 39, 511–528. DOI: 10.1016/S0196-8904(97)00044-7.
  • 47. Smith Y.R., Bhattacharyya D., Willhard T., Misra M., 2016. Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chem. Eng. J., 296, 102–111. DOI: 10.1016/j.cej.2016.03.082.
  • 48. Song M., Tang M., Lv S., Wang X., Jin B., Zhong Z., Huang Y., 2014. The pyrolysis of multi-component municipal solid waste in fixed bed reactor for activated carbon production. J. Anal. Appl. Pyrolysis, 109, 278–282. DOI: 10.1016/j.jaap.2014.05.018.
  • 49. Sudhakar P., Mall I.D., Srivastava V.C., 2016. Adsorptive removal of bisphenol-a by rice husk ash and granular activated carbon: a comparative study. Desalin. Water Treat., 57, 12375–12384. DOI: 10.1080/19443994.2015. 1050700.
  • 50. Teng H., Lin Y.C., Hsu L.Y., 2000. Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide. J. Air Waste Manag. Assoc., 50, 1940–1946. DOI: 10.1080/10473289.2000.10464221.
  • 51. Wang J., Zhang M., 2020. Adsorption characteristics and mechanism of bisphenol A by magnetic biochar. Int. J. Environ. Res. Public Health, 17, 1075–1092. DOI: 10.3390/ijerph17031075.
  • 52. Weber Jr. W., Morris J.C., 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., 18, 31–42.
  • 53. World Business Council for Sustainable Development, 2008. Managing end-of-life tires - Full report. Available at: http://docs.wbcsd.org/2008/08/EndOfLifeTires-FullReport.pdf.
  • 54. Zhao Y., Cho C.W., Cui L., Wei W., Cai J., Wu G., Yun Y.S., 2019. Adsorptive removal of endocrine-disrupting compounds and pharmaceutical using activated charcoal from aqueous solution: equilibrium, kinetics, and mechanism studies. Environ. Sci. Pollut. Res., 26, 33897–33905. DOI: 10.1007/s11356-018-2617-7.
  • 55. Zhu J., Liang H., Fang J., Zhu J., Shi B., 2011. Characterization of chlorinated tire-derived mesoporous activated carbon for adsorptive removal of toluene. CLEAN – Soil, Air, Water, 39, 557–565. DOI: 10.1002/clen.201000265.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a12ea0e4-fdbe-403d-8593-fc9659d5b1bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.