PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault analysis and reliability evaluation for motorized spindle of cycloidal gear grinding machine based on multi-source bayes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Monte Carlo simulation method based on multisource bayes is proposed to improve the reliability of motorized spindles in cycloid gear grinding machines and reduce their failure rate. Based on field investigations and motorized spindle maintenance records, a fault tree model of a motorized spindle was established, and the fuzzy importance of each bottom event was evaluated. The fault tree of a motorized spindle was used as a Monte Carlo reliability simulation model, and its importance was used as the input parameter for the simulation. The reliability evaluation index of the motorized spindle was obtained at different simulation times. The feasibility and accuracy of the reliability simulation were verified by comparing the importance and simulation importance. A vibration test was designed for bearing faults with high importance, and fault extraction was performed by combining the wavelet packet transform and empirical mode decomposition. This method can also be used to simulate and analyze the reliability of other equipment or machine tools.
Rocznik
Strony
art. no. 175010
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, Henan Province, China
  • State Key Laboratory of Intelligent Mining Heavy Equipment, Luoyang, Henan Province, China
autor
  • School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, Henan Province, China
autor
  • AVIC Jonhon Optronic Technology Co., Ltd., Luoyang, Henan Province, China
autor
  • State Key Laboratory of Intelligent Mining Heavy Equipment, Luoyang, Henan Province, China
autor
  • State Key Laboratory of Intelligent Mining Heavy Equipment, Luoyang, Henan Province, China
Bibliografia
  • 1. Nilesh P, Bhatt M G, Multicriteria FMECA based decision-making for aluminum wire process rolling mill through COPRAS-G.Journal of Quality and Reliability Engineering2016; 9, https://doi.org/10.1155/2016/8421916.
  • 2. Gajanand G, Rajesh P M, Comparative analysis of traditional and fuzzy FMECA approach for criticality analysis of conventionallathe machine.International Journal of System Assurance Engineering and Management2020; 11(2): 379-386, https://doi.org/10.1007/s13198-019-00938-y
  • 3. Lee G H, Akpudo U E, Hur J W, FMECA and MFCC-based early wear detection in gear pumps in cost-aware monitoring systems.Electronics2021; 10(23), https://doi.org/10.3390/electronics10232939
  • 4. Fabiś –Domagała J, Momeni H, Domagała M, Matrix FMEA analysis as a preventive method for quality design of hydraulic components.System Safety: Human -Technical Facility -Environment2019; 1(1): 684-691, https://doi.org/10.2478/czoto-2019-0087
  • 5. Soltanali H, Khojastehpour M, Farinha J T, An integrated fuzzy fault tree model with Bayesian network-based maintenance optimization of complex equipment in automotive manufacturing.Energies2021; 14(22): 7758, https://doi.org/10.3390/en14227758
  • 6. Qian C, Li W J, Ren Y, Monte-Carlo simulation-based analysis for structural reliability of the crane rail beam under stochastic crane movements and irradiation conditions.Quality and Reliability Engineering International2023; 39(5): 1704-1719, https://doi.org/10.1002/qre.3293
  • 7. Wang S X, Yao Y T, Ge D C, Reliability evaluation of standby redundant systems based on the survival signatures methods.Reliability Engineering & System Safety2023; 239: 109509, https://doi.org/10.1016/j.ress.2023.109509
  • 8. Zhu D P, Ding Z X, Probabilistic modeling for long-term fatigue reliability of wind turbines based on Markov model and subset simulation.International Journal of Fatigue2023; 173: 107685, https://doi.org/10.1016/j.ijfatigue.2023.107685
  • 9. Chen R Q, Chen G X, Liu X, Reliability prediction method for low-cycle fatigue life of compressor disks based on the fusion of simulation and zero-failure data.Applied Sciences-Basel2022; 12(9): 4318, https://doi.org/10.3390/app12094318
  • 10. Yu C Y, Guan Y L, Reliability synthesis and prediction for complex electromechanical system: A case study.Frontiers in Energy Research2022; 10: 865252, https://doi.org/10.3389/fenrg.2022.865252
  • 11. Denkena B, Dittrich M A, Keunecke L, Continuous modelling of machine tool failure durations for improved production scheduling.Production Engineering2020; 14(2): 207-215, https://doi.org/10.1007/s11740-020-00955-y
  • 12. Siju K C, Kumar M, Bayesian estimation of reliability using time-to-failure distribution of parametric degradation models.Journal of 2018; 88(9): 1717-1748, https://doi.org/10.1080/00949655.2018.1445743
  • 13. Yalcinkaya M, Birgoren B, Confidence interval estimation of Weibull lower percentiles in small samples via Bayesian inference.Journal of the European Ceramic Society2017; 37(8): 2983-2990, https://doi.org/10.1016/j.jeurceramsoc.2017.02.050
  • 14. Wang H L, Li J, Fu Y L, Zhang Z J, Reliability modeling and analysis of cycloid gear grinding machines based on the bootstrap-bayes method.Journal of Advanced Mechanical Design, Systems, and Manufacturing2023; 17(3), https://doi.org/10.1299/jamdsm.2023jamdsm0033
  • 15. Maskura N, Lance F, A Family of Software Reliability Models with Bathtub-Shaped Fault Detection Rate.International journal of reliability, quality and safety engineering2021; 28(5), https://doi.org/10.1142/S0218539321500340
  • 16. Huang L P, Gong Z L, Yue W H, Reliability simulation and prediction of mechanical equipment for maintenance.Advanced Materials Research2010; 139-141: 1060-1063, https://doi.org/10.4028/www.scientific.net/AMR.139-141.1060
  • 17. Hoseinie S H, Behzad G, Uday K, Monte carlo reliability simulation of water system of longwall shearer machine.International Journal of Reliability, Quality and Safety Engineering2013; 20(6), https://doi.org/10.1142/S021853931350023X
  • 18. Li C, Liu R X, Pan F K, Simulation of reliability prediction based on multiple factors for spinning machine.Autex Research Journal2020; 20(1): 17-23, https://doi.org/10.2478/aut-2019-0009
  • 19. Xiao N C, Zuo M J, Zhou C N, A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis.Reliability Engineering & System Safety2018; 169: 330-338, https://doi.org/10.1016/j.ress.2017.09.008
  • 20. 20. Sun Z L, Wang J, Li R, LIF: A new Kriging based learning function and its application to structural reliability analysis.Reliability Engineering & System Safety2017; 157: 152-165, https://doi.org/ 10.1016/j.ress.2016.09.003
  • 21. Mouzakitis A, Classification of fault diagnosis methods for control systems.Measurement & Control2013; 46(10): 303-308, https://doi.org/10.1177/0020294013510471
  • 22. Tang S N, Yuan S Q, Zhu Y, Deep learning-based intelligent fault diagnosis methods toward rotating machinery.Ieee Access2020; 8: 9335-9346, https://doi.org/10.1109/ACCESS.2019.2963092
  • 23. Yang P A, Yang J, Wang J L, Aero-engine gear fault diagnosis based on deep learning.Journal of Vibration, Measurement and Diagnosis2022; 42(6): 1062-1067, https://doi.org/10.16450/j.cnki.issn.1004-6801.2022.06.002.
  • 24. Mathur A, Kumar P, Harsha S P, Performance evaluation of three signal decomposition methods for bearing fault detection and classification.Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics2023; 237(1): 114-130, https://doi.org/10.1177/14644193221136661
  • 25. Talhaoui H, Ameid T, Aissa O, Wavelet packet and fuzzy logic theory for automatic fault detection in induction motor.Soft Computing2022; 26(21): 11935-11949, https://doi.org/10.1007/s00500-022-07028-5
  • 26. Lundgren A, Jung D, Data-driven fault diagnosis analysis and open-set classification of time-series data.Control Engineering Practice2022; 121: 105006, https://doi.org/10.1016/j.conengprac.2021.105006
  • 27. Wang H L, Fang K, Li J, Xi C F, Analysis and experimental study on vibration characteristics of the RV reducer.Advances in Mechanical Engineering2023; 15(6), https://doi.org/10.1177/16878132231181328
  • 28. Zhang J, Li N Z, Wei X J, Performance degradation analysis of reliability growth of airborne power supply based on logistic regression.Journal of Physics: Conference Series2020; 1629(1), https://doi.org/10.1088/1742-6596/1629/1/012029
  • 29. Wang P, Li W B, Thermal and structural coupling finite element analysis and simulation of high-speed grinding electric spindle.Mechanical Design and Manufacturing2016; 12: 146-149, https://doi.org/10.3969/j.issn.1001-3997.2016.12.040
  • 30. Zhao H X, Yang Z J, Chen C H, Optimization design of step stress accelerated degradation test for motorized spindle based on D-s-optimality.Applied Sciences-Basel2021; 11(9): 3832, https://doi.org/10.3390/app11093832
  • 31. Park M, Rhee S, A study on life evaluation & prediction of railway vehicle contactor based on accelerated life test data.Journal of Mechanical Science and Technology2018; 32(10): 4621-4628, https://doi.org/10.1007/s12206-018-0909-y
  • 32. Huang Z G, Wang S H, Wang J J, Research on comprehensive evaluation method of CNC machine tools based on RAMS.Journal of Mechanical Engineering2022; 58(9): 218-230, https://doi.org/10.3901/JME.2022.09.218
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a125bc3a-a7b3-4f64-8852-0619349b67f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.