Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Eksperymentalna ocena właściwości dynamicznych mikroturbiny energetycznej w obecności defektów układu wirującego
Języki publikacji
Abstrakty
Today’s energy systems increasingly use various types of microturbines to produce electricity. A specific feature of such machines is a high-speed rotor, whose rotational speed can be higher than 100,000 rpm. Failure-free operation of highspeed microturbine rotors requires both special design and high precision during the manufacturing process. What is more, proper procedures must be followed during run-up and coast-down phases; and also, dedicated diagnostic systems have to be used. This article discusses the experimental research conducted on a 2.5 kW vapour microturbine that operated in a prototypical combined heat and power plant. A series of measurements was carried out to evaluate the dynamic performance of the machine during normal operation. After the appearance of certain defects in the rotating system, it was necessary to perform a new series of measurements in order to assess the dynamic properties of the machine. The measurements results obtained in the form of vibration velocity spectrums made it possible to define diagnostic symptoms corresponding to particular defects. Similar diagnostic symptoms can occur during the operation of this class of turbomachines.
We współczesnych systemach energetycznych coraz częściej do wytwarzania energii elektrycznej stosowane są różnego typu mikroturbiny. Charakterystyczną cechą takich maszyn są wysokoobrotowe wirniki, których prędkości obrotowe mogą przekraczać nawet 100 000 obr/min. Praca wirnika w takich warunkach wymaga zastosowania specjalnych rozwiązań konstrukcyjnych i bardzo dużej precyzji wykonania, a podczas eksploatacji zachowania odpowiednich procedur przy rozruchu i odstawieniu, a także stosowania dedykowanych systemów diagnostycznych. W niniejszym artykule zostały omówione badania eksperymentalne mikroturbiny parowej o mocy 2,5 kW, pracującej w prototypowym układzie kogeneracyjnym. Wykonane pomiary obejmowały ocenę stanu dynamicznego podczas normalnej pracy maszyny oraz badania jej właściwości dynamicznych w obecności defektów układu wirującego. Uzyskane wyniki pomiarów, w postaci rozkładów częstotliwościowych drgań, pozwalają na zdefiniowanie symptomów diagnostycznych typowych dla różnych defektów, które mogą pojawić się podczas eksploatacji tej klasy maszyn wirnikowych.
Czasopismo
Rocznik
Tom
Strony
670--678
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Turbine Dynamics and Diagnostics Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera 14 str., 80-231 Gdansk, Poland
autor
- Department of Turbine Dynamics and Diagnostics Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera 14 str., 80-231 Gdansk, Poland
Bibliografia
- 1. Barella S, Bellogini M, Boniardi S, Cincera S. Failure analysis of a steam turbine rotor. Engineering Failure Analysis 2011; 18: 1511-1519, https://doi.org/10.1016/j.engfailanal.2011.05.006.
- 2. Barsali S, De Marco A, Giglioli R, Ludovici G, Possenti A. Dynamic modelling of biomass power plant using micro gas turbine. Renewable Energy 2015; 80: 806-818, https://doi.org/10.1016/j.renene.2015.02.064.
- 3. Beith R. (ed.), Small and micro combined heat and power (CHP) systems. Cambridge: Woodhed Publishing Limited, 2011, https://doi.org/10.1533/9780857092755.
- 4. Czmochowski J, Moczko P, Odyjas P, Pietrusiak D. Tests of rotary machines vibrations in steady and unsteady states on the basis of largediameter centrifugal fans. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16(2): 211-216.
- 5. Dominiczak K, Rządkowski R, Radulski W, Szczepanik R. Online prediction of temperature and stress in steam turbine components using neural network. Journal of Engineering for Gas Turbines and Power 2016; 138: 052606-1, https://doi.org/10.1115/1.4031626.
- 6. Drescher U, Bruggemann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Applied Thermal Engineering 2007; 27(1): 223-228, https://doi.org/10.1016/j.applthermaleng.2006.04.024.
- 7. Efimov N, Papin V, Bezuglov R. Determination of rotor surfacing time for the vertical microturbine with axial gas-dynamic bearings. Procedia Engineering 2016; 150: 294-299, https://doi.org/10.1016/j.proeng.2016.07.006.
- 8. Hong D, Joo D, Woo B, Koo D, Ahn C. Unbalance Response Analysis and Experimental Validation of an Ultra High Speed Motor-Generator for Microturbine Generators Considering Balancing. Sensors 2014; 14: 16117-16127, https://doi.org/10.3390/s140916117.
- 9. Kaczmarczyk T, Żywica G, Ihnatowicz E. Vibroacoustic diagnostics of a radial microturbine and a scroll expander operating in the organic Rankine cycle installation. Journal of Vibration Engineering 2016; 18(6): 4130-4147, https://doi.org/10.21595/jve.2016.17167.
- 10. Kataoka T, Kishikawa T, Sakata S, Nakagawa T, Ishiguro J. Remote monitoring and failure diagnosis for a microturbine cogeneration system. ASME Turbo Expo 2007, Montreal (Canada), GT2007-27355, https://doi.org/10.1115/GT2007-27355.
- 11. Keshtkar H, Alimardani A, Abdi B. Optimization of rotor speed variations in microturbines. Energy Procedia 2011; 12: 789-798, https://doi.org/10.1016/j.egypro.2011.10.105.
- 12. Kiciński J, Żywica G. Steam microturbines in distributed cogeneration, Cham: Springer, 2014, https://doi.org/10.1007/978-3-319-12018-8.
- 13. Klonowicz P, Witanowski Ł, Jędrzejewski Ł. A turbine based domestic micro ORC system. Energy Procedia 2017; 129: 923-930, https://doi.org/10.1016/j.egypro.2017.09.112.
- 14. Kozanecka D, Kozanecki Z, Tkacz E, Łagodziński J. Experimental research of oil-free support systems to predict the high-speed rotor bearing dynamics. International Journal of Dynamics and Control 2015; 3(1): 9-16, https://doi.org/10.1007/s40435-014-0074-9.
- 15. Kozanecki Z, Łagodziński J. Magnetic thrust bearing for the ORC high - speed microturbine. Solid State Phenomena 2013; 198: 348-353, https://doi.org/10.4028/www.scientific.net/SSP.198.348.
- 16. Kubitz L, Rządkowski R, Gnesin V, Kolodyazhnaya L. Direct integration method in aeroelastic analysis of compressor and turbine rotor blades. Journal of Vibration Engineering & Technologies 2016; 4(1): 37-42.
- 17. Liu C, Jiang D, Chen J, Chen J. Torsional vibration and fatigue evaluation in repairing the worn shafting of the steam turbine. Engineering Failure Analysis 2012; 26: 1-11, https://doi.org/10.1016/j.engfailanal.2012.06.001.
- 18. Margo P, Luck R. Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles. International Journal of Energy Research 2013; 37(8): 888-898, https://doi.org/10.1002/er.2891.
- 19. Otsu Y, Somaya K, Yoshimoto S. High-speed stability of a rigid rotor supported by aerostatic journal bearings with compound restrictors. Tribology International 2011; 44: 9-17, https://doi.org/10.1016/j.triboint.2010.09.007.
- 20. Pawlik P. Single-number statistical parameters in the assessment of the technical condition of machines operating under variable load. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 164-169, https://doi.org/10.17531/ein.2019.1.19.
- 21. Peirs J, Reynaerts D, Verplaetsen F. A microturbine for electric power generation. Sensors and Actuators 2004; 113: 86-93, https://doi.org/10.1016/j.sna.2004.01.003.
- 22. Poursaeidi E, Mohammadi Arhani M. Failure investigation of an auxiliary steam turbine. Engineering Failure Analysis 2010; 17: 1328-1336, https://doi.org/10.1016/j.engfailanal.2010.03.006.
- 23. Poursaeidi E, Taheri M, Farhangi A. Non-uniform temperature distribution of turbine casing and its effect on turbine casing distortion. Applied Thermal Engineering 2014, 71: 433-444, https://doi.org/10.1016/j.applthermaleng.2014.07.019.
- 24. Wang W, Buhl P, Klenk A, Liu Y, The effect of in-service steam temperature transients on the damage behavior of a steam turbine rotor. International Journal of Fatigue 2016; 87: 471-483, https://doi.org/10.1016/j.ijfatigue.2016.02.040.
- 25. Witek L, Orkisz M, Wygonik P, Musili D, Kowalski T. Fracture analysis of a turbine casing. Engineering Failure Analysis 2011; 18: 914-923, https://doi.org/10.1016/j.engfailanal.2010.11.005.
- 26. Zhang D, Xie Y, Feng Z. An investigation on dynamic characteristics of a high speed rotor with complex structure for microturbine test rig. ASME Turbo Expo 2008, Berlin (Germany), GT2008-50411, https://doi.org/10.1115/GT2008-50411.
- 27. Ziegler D, Puccinelli M, Bergallo M, Picasso A. Investigation of turbine blade failure in a thermal power plant. Case Studies in Engineering Failure Analysis 2013; 1: 192-199, https://doi.org/10.1016/j.csefa.2013.07.002.
- 28. Żywica G, Bagiński P. Investigation of gas foil bearings with an adaptive and non-linear structure. Acta Mechanica et Automatica 2019; 13(1): 5-10, https://doi.org/10.2478/ama-2019-0001.
- 29. Żywica G, Kaczmarczyk T, Ihnatowicz E, Turzyński T. Experimental investigation of the domestic CHP ORC system in transient operating conditions. Energy Procedia 2017; 129: 637-643, https://doi.org/10.1016/j.egypro.2017.09.123.
- 30. Żywica G, Kiciński J. The influence of selected design and operating parameters on the dynamics of the steam micro-turbine. Open Engineering 2015; 5: 385-398, https://doi.org/10.1515/eng-2015-0038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a123e685-b62a-4cbd-aa26-c573840097b2