PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a problem of Gevorkyan for the Franklin system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1870 G. Cantor proved that if [formula] for every real x, where [formula] then all coefficients cn are equal to zero. Later, in 1950 V.Ya. Kozlov proved that there exists a trigonometric series for which a subsequence of its partial sums converges to zero, where not all coefficients of the series are zero. In 2004 G. Gevorkyan raised the issue that if Cantor's result extends to the Franklin system. The conjecture remains open until now. In the present paper we show however that Kozlov's version remains true for Franklin's system.
Rocznik
Strony
681--687
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • AGH University of Science and Technology Faculty of Applied Mathematics al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The theory of splines and their applications, Academic Press, New York-London, 1967.
  • [2] F.G. Arutyunyan, A.A. Talalyan, Uniqueness of Series in Haar and Walsh systems, Izv. Akad. Nauk SSSR, Ser. Matem. 28 (1964), 1391-1408 [in Russian].
  • [3] N.K. Bari, Trigonometric series, Moscow 1961 [in Russian].
  • [4] S.V. Bochkarev, Existence of a basis in the space of functions analytic in a disc and some properties of the Franklin system, Mat. Sb. 95 (1974) 137, 3-18 [in Russian].
  • [5] G. Cantor, Uber einen die Trigonometrischen Reihen betreffenden Lehrsatz, Crelles J. fur Math. 72 (1870), 130-138.
  • [6] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), 141-157.
  • [7] Z. Ciesielski, A construction of basis in C(1)(/2), Studia Math. 33 (1969), 289-323.
  • [8] Z. Ciesielski, Constructive function theory and spline systems, Studia Math. 53 (1975), 278-302.
  • [9] Z. Ciesielski, J. Domsta, Construction of an orthonormal basis in Cm(Id) and W™(Id), Studia Math. 41 (1972), 211-224.
  • [10] S. Demko, Inverses of band matrices and local convergence of splines projections, SIAM J. Numer. Anal. 14 (1977) 4, 616-619.
  • [11] Ph. Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529.
  • [12] G.G. Gevorkyan, Ciesielski and Franklin systems, [in:] Approximation and Probability, Banach Center Publ. 72, Warszawa 2006, 85-92.
  • [13] V.Ya. Kozlov, On complete systems of orthogonal functions, Mat. Sbornik N.S. 26 (1950) 68, 351-364 [in Russian].
  • [14] J. Marcinkiewicz, Quelques theorems sur les series orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
  • [15] S. Schonefeld, Schauder bases in spaces of differential functions, Bull. Amer. Math. Soc. 75 (1969), 586-590.
  • [16] P. Wojtaszczyk, The Franklin system, is an unconditional basis in H1, Ark. Mat. 20 (1982), 293-300.
  • [17] Z. Wronicz, On the application of the orthonormal Franklin system to the approximation of analytic functions, [in:] Approximation Theory, Banach Center Publ. 4, PWN, Warszawa 1979, 305-316.
  • [18] Z. Wronicz Approximation by complex splines, Zeszyty Nauk. Uniw. Jagiellon. Prace Mat. 20 (1979), 67-88.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a122f512-2f41-4f1b-8cbb-1dc49a98b9a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.