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ON A PROBLEM OF GEVORKYAN
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Abstract. In 1870 G. Cantor proved that if limN→∞
∑N

n=−N
cneinx = 0 for every real x,

where c̄n = cn (n ∈ Z), then all coefficients cn are equal to zero. Later, in 1950 V.Ya. Kozlov
proved that there exists a trigonometric series for which a subsequence of its partial sums
converges to zero, where not all coefficients of the series are zero. In 2004 G. Gevorkyan
raised the issue that if Cantor’s result extends to the Franklin system. The conjecture remains
open until now. In the present paper we show however that Kozlov’s version remains true for
Franklin’s system.

Keywords: Franklin system, orthonormal spline system, trigonometric system, uniqueness
of series.

Mathematics Subject Classification: 42C10, 42C25, 41A15.

1. INTRODUCTION

In 1870 G. Cantor proved in [5] the following theorem.

Theorem 1.1. If limN→∞
∑N
n=−N cne

inx = 0 for every real number x, where c̄n = cn,
then cn = 0 for n ∈ Z.

In 1950 V.Ya. Kozlov [13] proved that there exists a trigonometric series∑∞
n=0 an cosnx+ bn sinnx such that a subsequence of its partial sums is convergent

to zero for x ∈ R and not all the coefficients are equal to zero. By the Gram-Schmidt
process to the Schauder basis Ph. Franklin constructed an orthonormal system of
continuous piecewise linear functions with dyadic knots. It is an orthonormal Schauder
basis in the space C[0, 1], and also in the space L2[0, 1]. In 1963 Z. Ciesielski [6] proved
exponential type estimates for Franklin functions. Since then, it has been studied by
many authors from different points of view. The Franklin system is an unconditional
basis in Lp[0, 1], 1 < p <∞ (S.V. Bochkarev [4]) and H1[0, 1] (P. Wojtaszczyk [16]).
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It has been used to prove the existence of a basis in the space C1([0, 1] × [0, 1])
(independently by Z. Ciesielski [7] and by S. Schonefeld [15]).

In the case of Haar and Walsh systems the uniqueness problem was solved by F.G.
Aratunyan and A.A. Talalyan in [2]. In 2004 G. Gevorkyan [12] raised the issue if
Cantor’s result extends to the Franklin system. This conjecture remains open until
now, and also for the periodic Franklin system which is obtained similarly to the
nonperiodic case. The periodic Franklin system has been used to construct a basis in
a disc algebra (S.V. Bochkarev [4]).

In 1938 J. Marcinkiewicz [14] obtained the following result.
Theorem 1.2. For any complete in L2[0, 1] an orthonormal system {ϕn}∞n=1 there
exists a nonzero series

∑∞
n=1 cnϕn(x) with a subsequence of its partial sums converging

to zero almost everywhere in the interval [0, 1].
The purpose of the paper is to prove the ensuing result.

Theorem 1.3. There is a nonzero Franklin series
∑∞
n=0 anfn(x) such that a subse-

quence {snk(x)}∞k=1 of its partial sums is convergent to zero in the interval [0, 1].

2. PROOF OF THEOREM 1.3

It suffices to prove the theorem for the Franklin system for the interval I = [−1, 1].
We use odd functions in the proof. Because of it and the simplicity of calculations, we
shall consider the Franklin system for this interval. Consider the following sequence
{∆n}∞n=1 of dyadic partitions of the interval I: ∆n = {sn,i}ni=0, s1,0 = −1, s1,1 = 1,

sn,i =
{

i
2µ − 1 for i = 0, 1, . . . , 2ν,
i−ν

2µ−1 − 1 for i = 2ν + 1, . . . , n
(2.1)

for n = 2µ + ν, µ = 0, 1, . . ., ν = 1, 2, . . . , 2µ.
We can obtain the Franklin system by means of cubic splines. We put

f0 = 1√
2
, f1 =

√
3
2 x.

Let gn be a cubic spline with respect to the partition ∆n, i.e. gn ∈ C2(I) and it
is a polynomial of degree at most 3 in each interval [sn,i−1, sn,i]. We assume that
gn(sn−1,j) = 0 for j = 0, 1, . . . , n − 1 and gn(sn,k) = 1 for sn,k = ∆n \ ∆n−1 with
g′n(±1) = 0. The spline gn is unique. For the proof we refer to [1]. It is similar to that
of the uniqueness of a spline Sn below. Because of its crucial role in the proof of the
main result, we shall give it in detail. Integrating by parts, we check that the system
{fn}∞n=0, where

fn = g′′n
‖g′′n‖

, ‖g′′n‖2 =
1∫
−1

[g′′n(x)]2 dx, n = 2, 3, . . . ,

is orthonormal in the interval I (see [1, 17,18]).
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Let

F (x) =


−1 for x ∈ [−1, 0),

0 for x = 0,
1 for x ∈ (0, 1].

(2.2)

We define the following sequence of functions {Sn(x)}∞n=0. Sn is a cubic spline inter-
polating the function F on ∆n, i.e. Sn(sn,i) = F (sn,i), S′n(±1) = 0. Let

Mi = S′′n(sn,i), hi = sn,i − sn,i−1, yi = F (sn,i), i = 0, 1, . . . , n,

y′0 = F ′(−1), y′n = F ′(1), d0 = 6
h1

(
y1 − y0

h1
− y′0

)
, dn = 6

hn

(
y′n −

yn − yn−1

hn

)
,

dj = 6
hj + hj+1

(
yj+1 − yj
hj+1

− yj − yj−1

hj

)
, λj = hj+1

hj + hj+1
,

µj = 1− λj , j = 1, . . . , n− 1, and λ0 = µn = 1, λn = µ0 = 0.

Sn is piecewise linear. Hence for x ∈ [sn,i−1, sn,i], i = 1, . . . , n, we get

S′′n(x) = Mi−1
sn,i − x
hi

+Mi
x− sn,i−1

hi
,

S′n(x) = −Mi−1
(sn,i − x)2

2hi
+Mi

(x− sn,i−1)2

2hi
+ Ci,

Sn(x) = Mi−1
(sn,i − x)3

6hi
+Mi

(x− sn,i−1)3

6hi
+ Ci(x− sn,i−1) +Di,

where Ci and Di are some constants. Using the interpolation conditions, we obtain

S′n(x) = −Mi−1
(sn,i − x)2

2hi
+Mi

(x− sn,i−1)2

2hi
+ yi − yi−1

hi
− (Mi −Mi−1)hi6 .

The function S′n is continuous on the interval [−1, 1]. Hence S′n(sn,i−) = S′n(sn,i+),
i = 1, . . . , n− 1, and we obtain

µjMj−1 + 2Mj + λjMj+1 = dj , j = 0, 1, . . . , n, whereM−1 := Mn+1 := 0. (2.3)

The matrix of this system has dominated the main diagonal. Hence, by the Gerschgorin
theorem, the spline Sn is unique ([1]) and S′′n(x) =

∑n
k=0 akfk(x) with not all an = 0.

Let n = 2k+1 = 2m. We have µj = λj = 1
2 , dj = 0 for j = 0, 1, . . . ,m − 2,m,

m+ 2, . . . , 2m and dm−1 = 3m2 = −dm+1.
Further we need the following result.

Theorem 2.1 (S. Demko [10]). Let A = [aij ] be an m×m band matrix with bandwidth
k, i.e. aij = 0 for | i− j |≥ k and ‖A‖p denote matrix lp-norm. Suppose there exist
1 ≤ p ≤ ∞ and M such that ‖A‖p ≤ 1 and ‖A−1‖p ≤M . Then there exist constants
C = Ck,M and q = qk,M , 0 < q < 1, such that for A−1 = [bij ]

| bij |≤ C q|i−j|, i, j = 1, . . . ,m.
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Let A = [aij ] be the matrix of the first m equations of the system (2.3) and
B = [bij ] = A−1. By means of Theorem 2.1 we prove that there exist constants C and
0 < q < 1 such that

|Mm−k |≤ Cm2qk, k = 1, 2, . . . (2.4)

Then for k ≥
√
m

|Mm−k |→ 0 as m→∞.

Let 0 < α < 1. We choose m such that α > 1√
m
. Hence for each ε > 0 there exists

δ > 0 such that |Mm−k |< ε for all integers m > δ and k ∈ [
√
m,m], and

Mm−k = S′′2m(sn,m−k) = S′′2m

(
− k

m

)
,

k

m
≥ 1√

m
.

Since S′′2m is piecewise linear, then | S′′2m(x) |< ε for x ∈ [−1, α]∪ [α, 1], and we obtain

lim
m→∞

S′′2m(x) = lim
m→∞

s2m(x) = lim
m→∞

2m∑
k=0

akfk(x) = 0.

The convergence is uniform on the intervals [−1,−α] and [α, 1] (0 < α < 1).
Now let n = 2µ + ν and ν = 2µ−1 = m. In this case the quantities Mj satisfy the

following system of equations
2M0 +M1 = 0,
Mj−1 + 4Mj +Mj+1 = dj , j = 1, . . . , 3m− 1,
M3m−1 + 2M3m = 0,

(2.5)

where dj = 0 for j = 1, . . . , 2m− 2, 2m+ 2, . . . , 3m− 1, and

d2m−1 = 24m2, d2m = −8m2, d2m+1 = −6m2.

To obtain M2m, we use the Cramer formulas for the system (2.5). After elementary
calculations, we write the nominator and the denominator in a form of block triangular
matrices and we prove that |M2m| → ∞ as m→∞.

Remark 2.2.

1) Theorem 1.1 remains true for the periodic Franklin system, and its proof is analogous
to that above.
2) Let

g0(x) = 1, g1(x) = x, gn(x) =
x∫

0

fn−1(t)dt,

where fn is the n-th Franklin function, n = 2, 3, . . .. Applying the Gram-Schmidt
process to this system, we obtain the Ciesielski orthonormal system of splines of
degree 2. Proceeding in the same way, we get an orthonormal system of splines
of degree 3. Repeating this process, we may obtain an orthonormal system of splines
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of degree k, where k = 1, 2, . . .. These systems were introduced by Z. Ciesielski [8].
We may prove Theorem 1.1 for them (cf. [8, 18]). In this case we interpolate the
function F from Theorem 1.1 by splines of odd degree and the function G(x) = 1 for
x ∈ [−1, 1] \ {0} and G(0) = 0 by splines of even degree.

3. THE GEVORKYAN PROBLEM FOR THE SPACE V OF FUNCTIONS
f ∈ C[0, 1] WITH f(0) = 0

Let {∆n}∞n=1, ∆n = {0 = x0 < x1 < . . . < xn = 1}, be a sequence of partitions of the
interval [0, 1] with ∆n−1 ⊂ ∆n (n = 1, 2 . . .) and

lim
n→∞

max
1≤i≤n

(xi − xi−1) = 0.

We define the Franklin system for the space V with the sequence {∆n}∞n=1 as follows:
f1 =

√
3x, gn+1 is a cubic spline such that gn+1(xj) = 0 for xj ∈ ∆n and gn+1(xk) = 1

for xk ∈ ∆n+1 \∆n, g′′n(0) = g′n(1) = 0. Then we put

fn+1(x) =
g′′n+1
‖g′′n+1‖

, n = 1, 2 . . . .

The system {fn}∞n=1 is orthonormal in the space L2[0, 1] and it forms a basis in the
space V (see [1, 6, 9, 10]). Now we define the sequence {Sn(x)}∞n=1 of cubic splines
such that Sn(xk) = 1 for xk ∈ ∆n, k = 1, 2, . . . , n, Sn(0) = S′′n(0) = S′n(1) = 0. As in
Theorem 1.1, we may prove that Sn is unique. S′′n(x) =

∑n
n=1 akfk(x), a1 = −

√
3.

Let Mj = S′′n(xj), j = 1, . . . , n. Using the Demko theorem, as in the proof of
Theorem 1.1, we prove that for any α ∈ (0, 1) the sequence {S′′n(x)}∞n=1 is uniformly
convergent to zero in the interval [α, 1]. Hence

lim
m→∞

S′′m(x) =
∞∑
n=1

anfn(x) = 0 on [0, 1] and a1 6= 0,

and thus we have proved the following result.

Theorem 3.1. There is a nonzero Franklin series
∑∞
n=1 anfn in the space V with

the sequence of partial sums converging to zero in the interval [0, 1].

4. PROBLEMS

Let {∆n}∞n=1 be a given sequence of partitions of the interval I = [−1, 1], ∆n =
{−1 = tn,0 < tn,1 < . . . < tn,n = 1} with ∆n ⊂ ∆n+1, i.e. each point of ∆n is a point
of ∆n+1. We assume that

lim
n→∞

max
1≤i≤n

(tn,i − tn,i−1) = 0.
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We define an orthonormal system of piecewise functions with respect to the sequence
of partitions {∆n}∞n=1 analogous to the Franklin system. We call it the general
Franklin system (see [12]). We have the following problems: to prove a counterpart of
Theorem 1.3 for

a) any general Franklin system (see [17]),
b) any complete orthonormal system in the space C[0, 1].
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