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In this paper, a modified Fourier-Ritz method is used to study free vibration of a rectangular
plate with a set of simply supported opposite sides and another set of arbitrary elastic
constraints. The influence of different elastic constraint stiffness values on the modal response
of the rectangular plate is also analyzed. In order to avoid that the displacement function
of the rectangular plate calculated by the traditional method and its derivative may be
discontinuous or non-derivable at the boundary, the displacement function is expressed in
the form of the sum of standard cosine series and a periodic polynomial function. Compared
with the sine series expansion, the convergence of the result is enhanced. Several sets of
numerical examples with different boundary conditions are given in the article, the data
shows that the results calculated by this method have good accuracy and fast convergence.
In addition, this paper also analyzes the boundary conditions and discusses the influence of
different spring stiffness values on the setting of boundary conditions. The results can be
applied to the setting of general boundary conditions and the study of vibration control of
rectangular plates.
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1. Introduction

As we all know, the rectangular plate structure has a wide range of applications in many fields of
mechanical engineering, construction engineering, vehicle engineering and other fields. Its vibra-
tion forms mainly include bending vibration, longitudinal vibration and transverse vibration.
The longitudinal and transverse modes belong to in-plane vibration, because its natural fre-
quency is usually not in the range of the main excitation frequency, it is only considered in some
special engineering applications (Du et al., 2007; He et al., 2013). On the contrary, the frequency
of transverse bending vibration is easily within the external excitation frequency range, so it has
a high reference value for research and practical application.

In the vibration solution of a rectangular plate with at least a pair of simply supported
opposite sides, the exact solution is usually expressed in the form of trigonometric and hyperbolic
functions or their combination (Han Qingkai, 2016; Cao, 1989), however, some of the constants
must be determined according to the boundary conditions, which are mainly affected by the
aspect ratio of the rectangular plate, the stiffness of the constrained spring, Poisson’s ratio,
thickness and other factors. Therefore, in some solving methods, it is forced to repeatedly solve
the equations to get solutions for different boundary conditions. Many researchers have adopted
the Rayleigh-Ritz method to solve the natural frequency of transverse vibration of a rectangular
plate with elastic constraints. Gavalas and El-Raheb (2014) and Ilanko et al. (2014) proved the
accuracy of this method and adopted this method to solve high-order modes of rectangular plates
under certain conditions. Wang et al. (2006) used the differential quadrature (DQ) method to
calculate vibration and buckling of rectangular plates with S-C-S-C (where C represents the



78 T. Wu et al.

clamped edge and S represents the simply supported edge, which is the same as later) boundary
conditions, and gave a numerical example to prove the accuracy and convergence of the method,
but the convergence of the results was oscillatory, and more terms were needed to obtain the
exact solution. Bert and Devarakonda (2003) used the Galerkin method to find the solution
of rectangular plates with S-S-S-S boundary conditions, however, it was difficult to ensure the
closedness of the solution under the condition of transverse shear deformation. Wei et al. (2020)
used the generalized superposition method to reduce the size of the stiffness matrix, and obtained
a homogeneous solution to the vibration control equation of a rectangular plate, and proved
its effectiveness, accuracy and convergence through examples. Banerjee et al. (2015) and Liu
and Banerjee (2016) derived the dynamic stiffness matrix of a rectangular plate by solving the
biharmonic equation, so as to more accurately obtain the natural frequency and vibration mode
of free vibration of the rectangular plate, and proved its accuracy by selecting modal vibration
samples, but complex symbolic calculation was required. Abdulkerim et al. (2019) studied the
rectangular plate with boundary constraint of F-C-F-C (where F represents free edge) through
an experimental method, and proved the effectiveness of the experimental method by comparing
the experimental results with the results of a finite element numerical model. Eisenberger and
Deutsch (2019) proposed a method to express the displacement function as a combination of
a trigonometric function and a hyperbolic function to calculate vibration of rectangular plates
under various boundary conditions. This solution does not need to separate the symmetric and
antisymmetric problems, but the calculation is more complicated. Zhang et al. (2020) directly
used the finite integral transformation method to obtain the analytical solution of free vibration
of a rectangular thin plate. The main advantage of this method was that there was no need to
re-determine the deviation function, so it had a certain universality. Li et al. (2019) combined the
symplectic elasticity method with the superposition method to obtain an analytical solution to
vibration of a rectangular thin plate with two adjacent free edges. The advantage of this method
is that it does not need to determine the form of the solution through experience, and can solve
the problems that cannot be solved by the traditional method under some specific conditions.
Xing and Xu (2013) used the variable separation method to calculate the exact solution of free
vibration of a rectangular thin plate under the classical boundary conditions, and gave the first
six natural frequencies of the orthotropic rectangular plate, but Bahrami et al. (2014) pointed
out that this method was not suitable for solving non-Levy type plates. In addition, many
researchers can also obtain more accurate vibration solutions of rectangular plates by using the
finite difference method, finite element method and discrete element method after appropriate
modification and optimization (Najarzadeh et al., 2018; Alkhayal et al., 2019).

From the above review of the research results, it can be seen that some researchers pay at-
tention to vibration of rectangular plates under certain constraints or classical constraints, but
in practical applications, they may encounter a combination of various boundary constraints.
Another part of the researchers tried to develop an algorithm that includes all boundary con-
straints, but there are also problems such as convergence oscillation, slow convergence and the
need to repeat symbolic calculations.

This paper proposes a modified Fourier-Ritz method to solve free vibration of a rectangular
plate with a set of simply supported opposite sides and another set of arbitrary elastic con-
straints. Similar methods have been used to solve vibration of single-beam and double-beam
structures (Li, 2001; Shi et al., 2015; Hao et al., 2018; Shi et al., 2016).

In this paper, the Fourier-Ritz method is modified and extended to solve vibration of rect-
angular plates, that is, the displacement function of the rectangular plate is expressed as the
sum of standard cosine series and a periodic polynomial function. This way, the discontinuity
or non-derivability of the displacement function or its derivative at the boundary can be elimi-
nated. Moreover, it can be applied to the solution of any boundary condition only by modifying
values of some parameters without frequently modifying the solution program. In this paper, the
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accuracy and convergence are verified by comparing several numerical examples under different
conditions with the existing research results. The influence of different spring stiffness values on
the setting of boundary conditions is discussed, and the results are helpful to the setting of gen-
eral boundary conditions. In addition, calculation results of transverse vibration of rectangular
plates under some boundary conditions are given.

2. Theoretical formulations

As shown in Fig. 1, this paper studies vibration of a rectangular plate with elastic constraints
along the edges. It is constrained by simple supports (the dashed line) in the y = 0, b direction
and elastic supports in the x = 0, a direction. It includes torsional springs (K0,Ka) and linear
springs (k0, ka). We can solve vibration of rectangular plates under different boundary constraints
by setting the stiffness value of elastic constraints, for example, by setting the stiffness value of
two linear springs to infinity and the two torsional springs to infinitesimal in order to achieve
the simple support constraint. According to Han Qingkai (2016), the free vibration differential
equation of a rectangular plate is

D
∂4w(x, y, t)

∂x4
+ 2D

∂4w(x, y, t)

∂x2∂y2
+D
∂4w(x, y, t)

∂y4
+ ρh
∂2w(x, y, t)

∂t2
= 0 (2.1)

where w(x, y, t) is the displacement function, ρ is density of the rectangular plate, D is bending
stiffness, and h is thickness of the rectangular plate. For natural vibration, the above solution
can be set as

w(x, y, t) =W (x, y)eiωt (2.2)

Fig. 1. Rectangular plate model with elastic constraints

By substituting (2.2) into (2.1), the following expression can be obtained

D
∂4W

∂x4
+ 2D

∂4W

∂x2∂y2
+D
∂4W

∂y4
− ρhω2W = 0 (2.3)

The boundary conditions constrained along the x direction are:
— at x = 0

k0 = −D
(∂3W
∂x3
+ (2− ν)

∂3W

∂x∂y2

)
K0
∂W

∂x
= D
(∂2W
∂x2
+ ν
∂2W

∂y2

)
(2.4)

— at x = a

ka = D
(∂3W
∂x3
+ (2− ν)

∂3W

∂x∂y2

)
Ka
∂W

∂x
= −D

(∂2W
∂x2
+ ν
∂2W

∂y2

)
(2.5)
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where k0 and ka are stiffness values of the linear spring, K0 and Ka are stiffness values of
the torsional spring, and ν is Poisson’s ratio of the rectangular plate. In the process of solving
equation (2.1), the solution must meet two conditions. First, the solution of the equation must
be continuous and have an n−1 order derivative, and the n order derivative must be integrable.
Second, the solution must meet the boundary conditions (Eqs. (2.4) and (2.5)). In this paper,
the modified Fourier-Ritz method is introduced, which is to express the solution of the equation
as the Fourier series expansion and the auxiliary polynomial. In the study of beam vibration
problems, this method is used to solve the problem that the traditional solution function with
only the Fourier sine series expansion may cause the original function or its derivative to exhibit
discontinuity at the end points (Huang and Lin, 2016). Based on this consideration, we express
the displacement function of the rectangular plate as the sum of the Fourier cosine series and
the auxiliary polynomial. The dynamic function is written as

W (x, y) =
∞∑

m=0

[Am cos(λamx) + (p1(x) + p2(x)) cos(λbny)] n = 0, 1, 2, . . . (2.6)

where λam = mπ/a, λbn = mπ/b, p1(x) and p2(x) are the auxiliary polynomials and Am are
unknown parameters.

The polynomial introduced must meet the following requirements

(p1(0) + p2(0)) cos(λbny) =W (0, y) = α0 cos(λbny)

(p1(a) + p2(a)) cos(λbny) =W (a, y) = αa cos(λbny)
(2.7)

and

∂2(p1(0) + p2(0))

∂x2
cos(λbny) =

∂2W (0, y)

∂x2
= β0 cos(λbny)

∂2(p1(a) + p2(a))

∂x2
cos(λbny) =

∂2W (a, y)

∂x2
= βa cos(λbny)

(2.8)

where α0, αa, β0, βa are unknown parameters.

The polynomials p1(x) and p2(x) must be continuous periodic functions, so p1(x) can be set
as the continuous lowest order polynomial

p1(x) =
αax

a
+
α0
a
(a− x) (2.9)

and

∂2p2(x)

∂x2
=
βax

a
+
β0
a
(a− x) (2.10)

By quadratic integration of (2.10) and combining with equations (2.8), it can be concluded that

p2(x) =
βa
6a
(x3 − a2x)−

β0
6a
(2a2x− 3ax2 + x3) (2.11)

The Fourier sine series expansion method was discussed by Mahapatra and Panigrahi (2020).
The cosine series expansion method was used to solve vibration problems of single-beam and
double-beam systems, and its correctness was verified. Here, we mainly study the application of
the modified Fourier-Ritz method to rectangular plates with simply supported opposite sides.
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By substituting equations (2.9), (2.11), (2.6) into equation (2.3), it can be obtained

k0
(
α0 +

∞∑

m=0

Am
)
= −D

(
−
β0
a
+
β1
a
− (2− ν)λ2bn

(
−
α0
a
+
α1
a
−
aβ0
3
−
aβ1
6

))

K0
(
−
α0
a
+
α1
a
−
aβ0
3
−
aβ1
6

)
= D

(
β0 +

∞∑

m=0

−Amλ
2
am + ν

(
−α0λ

2
bn +

∞∑

m=0

−Amλ
2
bn

))

ka
(
α1 +

∞∑

m=0

(−1)mAm
)

= D

(
−
β0
a
+
β1
a
+ (2− ν)(−λ2bn)

(
−
α0
a
+
α1
a
+
aβ0
6
+
aβ1
3

))

Ka
(
−
α0
a
+
α1
a
+
aβ0
6
+
aβ1
3

)

= −D

(
β1 +

∞∑

m=0

(−1)m+1Amλ
2
am + ν

(
−α1λ

2
bn +

∞∑

m=0

(−1)m+1Amλ
2
bn

))

(2.12)

According to (2.9) and (2.11), it can be concluded that

p1(x) + p2(x) = ζ(x)γ (2.13)

where

ζ(x) =

[
a− x

a
,
x

a
,
−(2a2x− 3ax2 + x3)

6a
,
x3 − a2x

6a

]

γ =
[
α0, αa, β0, βa

]T
(2.14)

According to equations (2.12), it can be found that

Hnγ =
∞∑

m=1

QnmAm (2.15)

where

Hn =




−k̃0 −
2− ν

a
λ2bn λ2bn(2− ν)

1

a

1

a
− λ2bn(2− ν)

a

3
−
1

a
− λ2bn(2− ν)

a

6
1

a
K̃0 − νλ

2
bn −

1

a
K̃0

a

3
K̃0 + 1

a

6
K̃0

λ2bn(2− ν)
1

a
−k̃a −

2− ν

a
λ2bn −

1

a
− λ2bn(2− ν)

a

6

1

a
− λ2bn(2− ν)

a

3

−
1

a
K̃a

1

a
K̃a − νλ

2
bn

a

6
K̃a

a

3
K̃a + 1




(2.16)
Qnm =

[
k̃0, λ

2
am + νλ

2
bn, (−1)

mK̃a, (−1)
mλ2am + ν(−1)

mλ2bn
]T

where k̃0 = k0/D, k̃a = ka/D, K̃0 = K0/D, K̃a = Ka/D.

By substituting Eqs, (2.13), (2.15) into Eq. (2.6), it can be obtained

W (x, y) =
∞∑

m=1

Am[cos(λamx) + ζ(x)H
−1
n Q

n
m] cos(λbny) n = 1, 2, . . . (2.17)
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Firstly, substitute Eq. (2.17) into Eq. (2.3), and then the Galerkin discretization is adopted.
Finally, the obtained equation is integrated in the whole domain of definition, which leads to

b

2
λ4am

(
a

2
+

a∫

0

cos(λamx)ζ(x)H
−1
n̄ Q

n̄
m̄ dx

)

+ 2 ·
b

2

(
a

2
λ2amλ

2
bn + λ

2
amλ

2
bn

a∫

0

cos(λamx)ζ(x)H
−1
n̄ Q

n̄
m̄ dx

− λ2bn

a∫

0

cos(λam̄x)(ζ(x))
′′H−1n Q

n
m dx− λ

2
bn

a∫

0

[(ζ(x))′′H−1n Q
n
m][ζ(x)H

−1
n̄ Q

n̄
m̄] dx

)

+
b

2
λ4bn

(
a

2
+

a∫

0

cos(λamx)ζ(x)H
−1
n̄ Q

n̄
m̄ dx+

a∫

0

cos(λam̄x)ζ(x)H
−1
n Q

n
m dx

+

a∫

0

[ζ(x)H−1n Q
n
m][ζ(x)H

−1
n̄ Q

n̄
m̄] dx

)
−
ρhω2

D

b

2

(
a

2
+

a∫

0

cos(λamx)ζ(x)H
−1
n̄ Q

n̄
m̄ dx

+

a∫

0

cos(λam̄x)ζ(x)H
−1
n Q

n
m dx+

a∫

0

[ζ(x)H−1n Q
n
m][ζ(x)H

−1
n̄ Q

n̄
m̄] dx

)
= 0

(2.18)

By sorting out equation (2.18), one can obtain

(
K−
ρhω2

D
M
)
A = 0 (2.19)

where (m, m̄ = 1, 2, . . . ,M , n, n̄ = 1, 2, . . . , N)

Km̄n̄,mn = δn̄n[(δm̄m +T
n̄
mm̄)(λ

2
am + λ

2
bn)
2 + λ4bn(T

n
m̄m +Um̄n̄,mn)− 2λ

2
bn(T̃

n
m̄m + Ũm̄n̄,mn)]

Mm̄n̄,mn = δn̄n(δm̄m +T
n
m̄m +T

n̄
mm̄ +Um̄n̄,mn)

A = [A11, A12, A13, . . . , A21, A22, A23, . . . , AM(N−2), AM(N−1), AMN ]
T

Smn = H
−1
n Q

n
m Sm̄n̄ = H

−1
n̄ Q

n̄
m̄

Tnm̄m = Pm̄Smn T̃nm̄m = P̃m̄Smn

Umn,m̄n̄ = (Smn)
TZSm̄n̄ Ũmn,m̄n̄ = (Smn)

TZ̃Sm̄n̄

Pm =
2

a

a∫

0

ζ(x) cos(λamx) dx

=
2

a

[
1− (−1)m

aλ2am
,
−1 + (−1)m

aλ2am
,
P1

6aλ4am
,
P2

6aλ4am

]

P1 = −6 + 2aλ
2
am + (−1)

m(6 + a2λ2am P2 = 6 + a
2λ2am + 2(−1)

m(−3 + a2λ2am)

P̃m =
2

a

a∫

0

(ζ(x))′′ cos(λamx) dx =
2

a

[
0, 0,
1− (−1)m

aλ2am
,
−1 + (−1)m

aλ2am

]

Z =
2

a

a∫

0

(ζ(x))Tζ(x) dx =
2

a




a
3

a
6 −a

3

45 −
7a3

360
a
6

a
3 −7a

3

360 −
a3

45

−a
3

45 −
7a3

360
2a5

945
31a3

15120

−7a
3

360 −
a3

45
31a3

15120
2a5

945



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Z̃ =
2

a

a∫

0

(ζ(x))T(ζ(x))′′ dx =
2

a




0 0 a
3

a
6

0 0 a
6

a
3

0 0 −a
3

45 −
7a3

360

0 0 −7a
3

360 −
a3

45




By solving the matrix eigenvalue problem of equation (2.19), we can easily obtain the natural
frequency and the corresponding modal shape of the rectangular plate. By changing the stiffness
values of linear and torsional springs, different boundary conditions can be solved (in the solution
process, the values of m and n were truncated to M and N , respectively).

3. Numerical examples and discussions

In this Section, the accuracy and convergence of the above method will be demonstrated and
compared with the traditional method and results of some researchers. At the same time, the
vibration problem of a rectangular plate with elastic constraints along the edge will be discussed
by changing the stiffness value of the spring and the aspect ratio of the rectangular plate.

3.1. Convergence and accuracy analysis

In order to verify the accuracy and convergence of this method, firstly, we calculate the
vibration frequency of a square plate simply supported and fixed along the opposite sides by
setting the stiffness of four springs to be infinite (1010 here, which will be discussed in the next
Section). The traditional use of a single sine function to solve the equation is (Cao, 1989)

(β21m − β
2
2m) sin(β1mb) sinh(β2mb)− 2β1mβ2m[cos(β1mb) cosh(β2mb)− 1] = 0 (3.1)

where

β1m =

√

a2 −
(mπ
a

)2
β2m =

√

a2 +
(mπ
a

)2
(3.2)

In the process of calculation, we generally perform dimensionless processing on the calculated
frequency to display the calculation result, that is, use ̟ = ωa2(ρh/D)1/2 to display the data.
Table 1 shows the results of calculating the lowest sixth-order frequency parameter ̟ with
different truncation coefficients M (N = 10). It also includes the data calculated by Eq. (3.1)
and the data studied by the researcher. In addition, we also use the finite element software for
calculation, in which the density of the rectangular thin plate is ρ = 7850 kg/m3, elastic modulus
is E = 2.0 · 1011 Pa, length a = 2m, and Poisson’s ratio ν = 0.3. The finite element method is
modeled by Shell181 element in Workbench. The division element size is 0.03m and the grid
type adopts quadrilateral grid division formula (the same parameters are used below). Through
comparison, it can be seen that this method has faster convergence and higher accuracy.
Next, we study vibration of a typical rectangular plate with a free boundary. By setting

the parameters k̃0 = 10
10 and k̃a = K̃0 = K̃a = 0 of four springs, respectively, the simple

support along the x = 0 direction and the free edge along the x = a direction is realized. Since
vibration of a rectangular plate with a free edge is related to Poisson’s ratio ν, ν = 0.3 in the
calculation process, and the corresponding traditional frequency parameter calculation formula
is (Cao, 1989)

λ2[Ω − (1− ν)n
2π2]2 sinλ1 coshλ2 − λ1[Ω + (1− ν)n

2π2]2 cosλ1 sinhλ2 = 0 (3.3)

where

Ω = b2ω

√
ρh

D
λ1,2 =

a

b

√
Ω ∓ n2π2 (3.4)
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Table 1. Frequency parameters of the C-S-C-S plate with the increasing truncation coefficientM

M
Frequency parameter ̟ order

1st 2nd 3rd 4th 5th 6th

6 29.0131 54.8626 69.327 94.5863 102.405 130.376

8 28.9808 54.8018 69.327 94.5855 102.312 129.706

10 28.9674 54.776 69.327 94.5853 102.271 129.433

12 28.961 54.7633 69.327 94.5853 102.250 129.301

20 28.9533 54.748 69.327 94.5853 102.225 129.145

Eq. (3.1) 28.9444 54.7452 69.3223 94.5756 102.2121 129.0496

Zhang et al. (2020) 28.9509 54.7431 69.3270 94.5853 102.2160 129.096

Workbench 28.9620 54.7819 69.4259 94.6927 102.4160 129.49

Table 2 shows the results of calculating the lowest sixth-order frequency parameter ̟ when
taking different truncation coefficients M (N = 10). It also includes the data calculated by Eq.
(3.3), the data studied by the researcher and the results of Workbench. The comparison shows
that the method of Fourier cosine series expansion is consistent with the results calculated by
traditional methods.

Table 2. Frequency parameters of the S-S-F-S plate with the increasing truncation coefficientM

M
Frequency parameter ̟ order

1st 2nd 3rd 4th 5th 6th

6 11.6907 27.7569 41.2583 59.1643 62.3863 90.5934

8 11.6872 27.7566 41.223 59.1077 61.0816 90.0027

10 11.6859 27.7565 41.2102 59.0872 61.9743 90.3605

12 11.6854 27.7564 41.2045 59.0781 61.9269 90.3323

20 11.6847 27.7564 41.1984 59.0683 61.8752 90.3023

Eq. (3.3) 11.6845 27.7564 41.1967 59.0659 61.8606 90.2948

[20] 11.7609 27.8126 41.6851 59.5089 — —

Workbench 11.6853 27.7569 41.2370 59.0994 61.9098 90.5002

[20] – Mahapatra and Panigrahi (2020)

Through the comparison of the data of the two sets of different boundary conditions in
Tables 1 and 2, it can be found that the results calculated by Eq. (2.19) are consistent with
the results obtained by traditional research. There are free edges in the boundary conditions
in Table 2, which is more illustrative for verification of the results. At the same time, Tables 1
and 2 show that with an increase in the truncation coefficient M , the results tend to be more
stable, which verifies the convergence of the Fourier cosine series expansion.

3.2. Boundary condition analysis

This paper studies vibration of a rectangular plate with elastic constraints along the edges.
One can solve different constraints by setting the stiffness of the elastic constraint, for example,
by setting the stiffness of two linear springs to be infinite and stiffness of the two torsional springs
to be infinitesimal in order to realize the simply supported constraint of the rectangular plate,
but now there is no way to determine whether the data substituted in the calculation process is
infinitely large or infinitely small. Therefore, the influence of spring stiffness of different sizes on
the frequency parameter ̟ = ωa2(ρh/D)1/2 needs to be discussed in detail. In the calculation
process, take the truncation coefficient M = N = 10, the stiffness of one spring is changed
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respectively. As shown in Fig. 2, the results of the lowest fourth-order frequency parameter ̟
are changing with different stiffness values of different types of springs.

Fig. 2. Values of the dimensionless parameter ̟ corresponding to different spring stiffness

In Fig. 2, the variation of frequency parameters under different boundary constraints is basi-
cally the same. As the spring stiffness value increases, the boundary conditions slowly evolve into
the well-known simple support constraint. When the stiffness value exceeds 104, the frequency
parameters basically tend to be stable, that is, the set constraint conditions are reached. For the
accuracy of calculation, this paper takes the infinity as 1010 and the infinitesimally small value
as 10−2 (to avoid calculation of singular matrices).

3.3. Analysis of other typical boundary conditions

Tables 1 and 2 respectively calculated the frequency parameters of rectangular plates with
simply supported boundaries and free boundaries, which proved the accuracy and convergence of
the modified Fourier-Ritz method. Now we consider vibration of a rectangular plate constrained
by an elastic support along the x = 0, a direction. We set the linear spring stiffness to be
k̃0 = k̃a = 10

10, while the torsional spring changes from K̃0 = K̃a = 0 to K̃0 = K̃a = ∞.
In this way, the boundary conditions evolve into typical simply supported and fixed supported
cases. In the calculation process, the truncation coefficient M = 20 and the frequency parameter
̟1 = ω

2a4ρh/(π4D) are taken. The calculation results are shown in Table 3.
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Table 3. Frequency parameters of the S-S-S-S plate with the increasing K̃0 and K̃a

K̃0 = K̃a
Frequency parameter ̟1 order

1st 2nd 3rd 4th 5th 6th

0 4.00012 25.0 100.087 289.0 677.908 1369.0

Li and Daniels (2002) 4.0 25.0 100.0 289.0 — —

10 6.1698 34.8307 124.753 335.975 756.074 1484.59

Li and Daniels (2002) 6.16826 34.8307 124.569 335.975 — —

100 8.14601 46.2672 160.343 417.339 911.333 1747.12

Li and Daniels (2002) 8.14370 46.2673 160.131 417.339 — —

1000 8.55552 48.9957 169.974 442.468 964.124 1848.06
...

...
...

...
...

...
...

∞ 8.60589 49.3407 171.22 445.822 971.306 1862.28

Li and Daniels (2002) 8.60448 49.3408 171.089 445.823 — —

Fig. 3. Mode shapes corresponding to the lowest sixth-order frequency parameter ̟ = ωa2(ρh/D)1/2 at
y = b/2

The data in Table 3 shows that the modified Fourier-Ritz method is also consistent with the
results of other researchers in the rectangular plate with the torsional constraint. In order to
better understand the effect of stiffness of the torsional spring on the mode shape, the vibration
mode corresponding to the lowest sixth order frequency parameter ̟ = ωa2(ρh/D)1/2 at y = b/2
(truncation coefficient N = 1) is shown in Fig. 3. It can be seen from the figure that with an
increase in the spring stiffness, the amplitude slightly increases, and the vibration mode towards
the boundary becomes more and more flat, which is in line with our common sense.
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In the previous calculation, square plates are taken as examples. Here, we consider the change
of the frequency parameter ̟1 = ω

2a2b2ρh/(π4D) of a rectangular plate with different aspect
ratios as the torsional spring stiffness increases, and take the truncation coefficient M = 10.
The first-order frequency parameters are shown in Table 4. It can be seen from the table that
the method described in this paper still has good accuracy, and we can also know that the
frequency parameters increase regularly with the increase of torsional spring stiffness under the
same aspect ratio.

Table 4. Frequency parameters of the S-S-S-S plate with different aspect ratios as K̃0 and K̃a
increase

K̃0 = K̃a

Frequency parameter ̟1 order
b/a = 0.5 b/a = 1.0 b/a = 1.5

Present Cao (1989) Present Cao (1989) Present Cao (1989)

0 6.25003 6.25 4.00012 4.0 4.6947 4.694

1 6.34486 6.333 4.37341 4.373 5.5308 5.530

10 6.84843 6.847 6.1698 6.168 9.44909 9.446

100 7.51621 7.514 8.14601 8.144 13.5607 13.557

1000 7.67292 — 8.55552 — 14.3879 —

∞ 7.69267 7.691 8.60589 8.604 14.4891 14.487

In addition, according to the solution to equation (2.12)3, when the boundary condition
contains the free boundary, the frequency parameter is related to Poisson’s ratio ν. By set-
ting k̃0 = 10

10 and k̃a = K̃0 = K̃a = 0, we discuss the simple support along the x = 0 direction
and the free edge along the x = a direction. Take the frequency parameter̟ = [ωb2(ρh/D)1/2]1/2

and the truncation coefficient M = 20. The first-order frequency parameters with different as-
pect ratios and Poisson’s ratio are shown in Table 5. The data in Table 5 shows the accuracy
of the modified Fourier-Ritz method. It is also found that different Poisson’s ratios have more
complicated effects on rectangular plates with free edges.

Table 5. Frequency parameters of the S-S-F-S plate with different aspect ratios and Poisson’s
ratio

b/a
Frequency parameter ̟ order

ν = 0.3 ν = 1/3 ν = 0.5
Present Workbench Present Cao (1989) Present Cao (1989)

0.4 3.1822 3.1845 3.1764 3.176 3.1262 3.126

2/3 3.2667 3.2674 3.2571 3.257 3.1827 3.183

1.0 3.4183 3.3539 3.4032 3.403 3.2969 3.297

1.5 3.7029 3.7027 3.6791 3.679 3.5255 3.525

2.5 4.336 4.3357 4.297 4.298 4.0626 4.063

Finally, consider a more complicated boundary condition. The square plate is clamped along
the x = 0 direction, and there are elastic and linear constraints along the x = a direction. We
set the boundary conditions as k̃0 = K̃0 = 10

10, k̃a = 100 and K̃a = 10 to calculate this case,
where the frequency parameter is ̟ = ωa2(ρh/D)1/2. Table 6 shows the results of the first
six-order frequency parameters and different truncation coefficient combinations calculated by
this method. The results calculated by the previous researchers are attached. The data shows
that this method has good convergence and accuracy.
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Table 6. Frequency parameters of the S-S-F-S plate with the increasing truncation coefficientM

M
Frequency parameter ̟ order

1st 2nd 3rd 4th 5th 6th

6 19.4188 40.7813 44.8837 67.2078 81.564 92.7143

8 19.3991 40.7715 44.8566 67.1878 81.317 92.6633

10 19.3916 40.7676 44.8462 67.1788 81.2237 92.6441

12 19.3881 40.7657 44.8415 67.1743 81.1808 92.6352

20 19.3843 40.7636 44.8361 67.1689 81.1326 92.6253

Leissa (1993) 19.3982 40.7187 44.8104 67.0422 81.0514 92.5214

4. Conclusions

In this paper, the modified Fourier-Ritz method for the analysis and calculation of rectangular
plates vibration is introduced. The method is mainly applied to a rectangular plate with a set
of simply supported opposite sides and another set of arbitrary elastic constraints. Differently
from the classical method, in order to the displacement function of the rectangular plate in
the traditional method and its derivative to be discontinuous or non-derivable at the boundary,
the displacement function is expressed in the form of the sum of standard cosine series and
periodic polynomial functions, by solving the eigenvalues of the matrix to obtain the mode of
the rectangular plate. In order to verify the accuracy and convergence of the modified Fourier-
-Ritz method, several numerical examples are given in this paper. Compared with the results
of the traditional calculation method, the data shows that the method has the advantages of
fast convergence and high accuracy. Moreover, the boundary conditions are also analyzed in the
article, and different spring stiffness settings can evolve into different boundary conditions. The
method studied in this paper is helpful to the design of rectangular plate structures and the
study of vibration control.
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