PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine learning prediction of future peripheral neuropathy in type 2 diabetics with percussion entropy and body mass indices

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was designed to evaluate the clinical applications of body mass index (BMI) and a percussion-entropy-based index (PEINEW) for predicting the development of diabetic peripheral neuropathy (DPN) in a group of type 2 diabetes mellitus (DM) patients. The study population comprised a sample of 90 subjects with diabetics (aged 37–86 years), who went through a blood test and photoplethysmography (PPG) measurement and were then followed for 5.5 years. Conventional parameters, including the small-scale multiscale entropy index (MEISS), pulse wave velocity with electrocardiogram located (PWVmean), and PEIoriginal, were computed and compared. A logistic regression model with PEINEW and a single categorical variable (BMI) showed a graded association between the diabetics, with a high BMI (i.e., ‘‘high” category) associated with a 12.53-fold greater risk of developing DPN relative to the diabetics with a low BMI (i.e., ‘‘low” category) (p = 0.001). The odds ratio for PEINEW was 0.893. The Kaplan-Meier survival analysis showed that the diabetic patients with BMI > 30 had a significantly higher cumulative incidence of PN on follow-up than those with BMI [...] 30 (log-rank test, p < 0.001). These findings suggest that BMI and PEINEW are both important risk and protective factors for new-onset DPN from diabetes mellitus and, thus, BMI and percussion entropy calculation can provide valid information that may help to identify diabetics with a high BMI and a low PEINEW as being at increased risk of future DPN.
Twórcy
  • School of Computer Science and Information Technology, Hefei University of Technology, Hefei, Anhui, China; School of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia, China
autor
  • School of Computer Science and Information Technology, Hefei University of Technology, Hefei, Anhui, China
autor
  • School of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia, China
  • Basic Experimental Teaching & Engineering Training Center, North Minzu University, Yinchuan, Ningxia, China
  • Department of Physics, Universitas Ahmad Dahlan, Jendral A. Yani Street, Kragilan, Tamanan, Kec, Banguntapan, Bantul, Daerah Istimewa, Yogyakarta, Indonesia
  • Department of Electrical Engineering, Dong Hwa University, Shoufeng, Hualien, Taiwan
Bibliografia
  • [1] Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 2018;14(10):591–604. https://doi.org/10.1038/s41574-018-0048-7.
  • [2] van Dooren FEP, Nefs G, Schram MT, Verhey FRJ, Denollet J, Pouwer F, et al. François Pouwer depression and risk of mortality in people with diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2013;8(3):e57058. https://doi.org/10.1371/journal.pone.0057058.
  • [3] World Health Organization. Global report on diabetes. World Health Organization. 2016, 10–19, 34–65. https://apps.who.int/iris/handle/10665/204871.
  • [4] Eugene J Barrett, Zhenqi Liu, Mogher Khamaisi, George L King, Ronald Klein, Barbara E K Klein, Timothy M Hughes, Suzanne Craft, Barry I Freedman, Donald W Bowden, Aaron I Vinik, Carolina M Casellini, Diabetic microvascular disease: an endocrine society scientific statement, The Journal of Clinical Endocrinology & Metabolism 2017, 102, 12, 1, 4343–4410, https://doi.org/10.1210/jc.2017-01922.
  • [5] Shen Y, Shi L, Nauman E, Katzmarzyk PT, Price-Haywood EG, Bazzano AN, et al. Inverse association between HDL (high-density lipoprotein) cholesterol and stroke risk among patients with type 2 diabetes mellitus. Stroke 2019;50(2):291–7. https://doi.org/10.1161/ STROKEAHA.118.023682.
  • [6] Shen Y, Shi L, Nauman E, Katzmarzyk PT, Price-Haywood EG, Bazzano AN, Nigam S, Hu G. Association between Body Mass Index and Stroke Risk Among Patients with Type 2 Diabetes. J Clin Endocrinol Metab. 2020, 105, 1, 96–105. doi: 10.1210/clinem/dgz032.
  • [7] Pfannkuche A, Alhajjar A, Ming A, Walter I, Piehler C, Mertens PR, et al. 1, 1–2. ISSN 2020;100053:2666–3961. https://doi.org/ 10.1016/j.endmts.2020.100053.
  • [8] Juster-Switlyk K, Smith AG. Updates in diabetic peripheral neuropathy. F1000Research 2016;5:738. https://doi.org/10.12688/f1000research.7898.1.
  • [9] Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, et al. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy. Clin Ther 2018;40:828–49.
  • [10] Javed, Saad & Hayat, T. & Menon, L. & Alam, Uazman & Malik, Rayaz. Diabetic peripheral neuropathy in people with type 2 diabetes: too little too late. Diabetic Medicine 2019, 37. 10.1111/dme.14194.
  • [11] Liu X, Xu Y, An M, Zeng Q, Palazón-Bru A. The risk factors for diabetic peripheral neuropathy: A meta-analysis. PLoS ONE 2019;14(2):e0212574. https://doi.org/10.1371/journal.pone.0212574.
  • [12] Kato Y, Bando H, Matsuzaki S, Waka S. Recent topics on various clinical problems related with diabetic neuropathy. J Clin Neurol Neurosci 2020;1:01.
  • [13] Lin IW, Chang HH, Lee YH, Wu YC, Lu CW, Huang KC. Blood sugar control among type 2 diabetic patients who travel abroad: A cross sectional study. Medicine 2019;98. https://doi.org/10.1097/MD.0000000000014946 e14946.
  • [14] Zhao M, Guan L, Wang Y, Guan L, Wang Y. The association of autonomic nervous system function with ischemic stroke, and treatment strategies. Front Neurol 2020;10. https://doi.org/10.3389/fneur.2019.01411.
  • [15] Grover-Paez F, Zavalza-Gomez AB. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res Clin Pract 2009;84:1–10.
  • [16] Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol 2019;73(10):1189–206. https://doi.org/10.1016/j.jacc.2018.12.064.
  • [17] Jaiswal M, Divers J, Dabelea D, Isom S, Bell RA, Martin CL, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with Type 1 and Type 2 Diabetes: SEARCH for diabetes in youth study. Diabetes Care 2017;40 (9):1226–32. https://doi.org/10.2337/dc17-0179.
  • [18] Lee JH, Kim JH, Hong AR, Kim SW, Shin CS. Optimal body mass index for minimizing the risk for osteoporosis and type 2 diabetes. Korean J Intern Med 2020;35(6):1432–42. https://doi.org/10.3904/kjim.2018.223.
  • [19] Zulfania KA, Ghaffar T, Kainat A, Arabdin M, Rehman Orakzai SU. Correlation between serum leptin level and Body mass index (BMI) in patients with type 2 diabetes Mellitus. J Pak Med Assoc 2020;70(1):3–6. https://doi.org/10.5455/JPMA.301135.
  • [20] Pandey A, Patel KV, Bahnson JL, Gaussoin SA, Martin CK, Balasubramanyam A, et al. Association of intensive lifestyle intervention, fitness, and body mass index with risk of heart failure in overweight or obese adults with type 2 diabetes mellitus: an analysis from the look AHEAD trial. Circulation 2020;141(16):1295–306. https://doi.org/10.1161/CIRCULATIONAHA.119.044865.
  • [21] MacDonald CS, Nielsen SM, Bjørner J, Johansen MY, Christensen R, Vaag A, et al. One-year intensive lifestyle intervention and improvements in health-related quality of life and mental health in persons with type 2 diabetes: a secondary analysis of the U-TURN randomized controlled trial. BMJ Open Diab Res Care 2021;9(1):e001840. https://doi. org/10.1136/bmjdrc-2020-001840.
  • [22] Jamin A, Humeau-Heurtier A. (Multiscale) cross-entropy methods: A review. Entropy 2020;22(1):45. https://doi.org/ 10.3390/e22010045.
  • [23] Wu HT, Lee CY, Liu CC, Liu AB. Multiscale cross-approximate entropy analysis as a measurement of complexity between ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects. Comput Math Methods Med 2013;2013(1):7.
  • [24] Wei H-C, Xiao M-X, Ta Na, Wu H-T, Sun C-K. Assessment of diabetic autonomic nervous dysfunction with a novel percussion entropy approach. Complexity 2019;2019:1–11. https://doi.org/10.1155/2019/6469853.
  • [25] Xiao MX, Lu CH, Ta N, Jiang WW, Tang XJ, Wu HT. Application of a speedy modified entropy method in assessing the complexity of baroreflex sensitivity for agecontrolled healthy and diabetic subjects. Entropy 2019;21:894.
  • [26] Wei H-C, Ta Na, Hu W-R, Wang S-Y, Xiao M-X, Tang X-J, et al. Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects. Diagnostics 2020;10 (1):32. https://doi.org/10.3390/diagnostics10010032.
  • [27] Wei H-C, Hu W-R, Ta Na, Xiao M-X, Tang X-J, Wu H-T. Prognosis of diabetic peripheral neuropathy via decomposed digital volume pulse from the fingertip. Entropy 2020;22 (7):754. https://doi.org/10.3390/e22070754.
  • [28] Ye M, Robson PJ, Eurich DT, Vena JE, Xu JY, Johnson JA. Changes in body mass index and incidence of diabetes: A longitudinal study of Alberta’s Tomorrow Project Cohort. Prev Med 2018;106:157–63. https://doi.org/10.1016/j.ypmed.2017.10.036.
  • [29] Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009;9(1). https://doi.org/10.1186/1471- 2458-9-88.
  • [30] Anderson RP, Jin R, Grunkemeier GL. Understanding logistic regression analysis in clinical reports: an introduction. Ann Thorac Surg 2003;75:753–7.
  • [31] Bewick V, Cheek L, Ball J. Statistics review 14: Logistic regression. Crit Care 2005;9(1):112–8. https://doi.org/10.1186/cc3045.
  • [32] Stoltzfus JC. Logistic regression: a brief primer. Acad Emerg Med 2011;18:1099–104. ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects. Comput Math Methods Med 2013;2013(1):7.
  • [33] Wu HT, Hsu PC, Liu AB, Chen ZL, Huang RM, Chen CP, et al. Six-channel ECG-based pulse wave velocity for assessing whole-body arterial stiffness. Blood Press 2012;21:167–76.
  • [34] Wu HT, Hsu PC, Lin CF, Wang HJ, Sun CK, Liu AB, et al. Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic. IEEE Trans Biomed Eng 2011;58:2978–81.
  • [35] Frank E. Harrell, Jr. Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed.; Springer, Switzerland, 2015; pp. 103–126.
  • [36] Li L, Liu ZP. Biomarker discovery for predicting spontaneous preterm birth from gene expression data by regularized logistic regression. Comput Struct Biotechnol J 2020;10 (18):3434–46. https://doi.org/10.1016/j.csbj.2020.10.028. PMID: 33294138.
  • [37] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37(Suppl. 1):S81–90.
  • [38] Gray N, Picone G, Sloan F, Yashkin A. Relation between BMI and diabetes mellitus and its complications among US older adults. South Med J 2015;108(1):29–36. https://doi.org/10.14423/SMJ.0000000000000214.
  • [39] Doerr F, Badreldin AM, Bender EM, et al. Outcome prediction in cardiac surgery: the first logistic scoring model for cardiac surgical intensive care patients. Minerva Anestesiol 2012;78 (8):879–86.
  • [40] Doerr F, Heldwein MB, Bayer O, Sabashnikov A, Weymann A, Dohmen PM, et al. Combination of European system for cardiac operative risk evaluation (Eu-roSCORE) and cardiac surgery score (CASUS) to improve outcome prediction in cardiac surgery. Med Sci Monit Basic Res 2015;21:172–8.
  • [41] Rahmanian PB, Kröner A, Langebartels G, Özel O, Wippermann J, Wahlers T. Impact of major non-cardiac complications on outcome following cardiac surgery procedures: logistic regression analysis in a very recent patient cohort. Inter Cardiovas Thoracic Surg 2013;17 (2):319–27. https://doi.org/10.1093/icvts/ivt149.
  • [42] Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York, U.S.A: John Wiley & Sons:; 1989. p. 143–202.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a11724a1-2695-45a3-9200-8dbd649cbd52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.