PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of pore architecture of 3D printed open porosity cellular structures on their resistance to mechanical loading. Part I, Experimental studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of additive manufacturing (AM) techniques has sparked interest in porous structures that can be customized in terms of size, shape, and arrangement of pores. Porous lattice structure (LS, called also lattice struct) offer superior specific stiffness and strength, making them ideal components for lightweight products with energy absorption and heat transfer capabilities. They find applications in industries such as aerospace, aeronautics, automotive, and bone ingrowth applications. One of the main advantages of additive manufacturing is the freedom of design, control over geometry and architecture, cost and time savings, waste reduction, and product customization. However, the designation of appropriate struct/pore geometry to achieve the desired properties and structure remains a challenge. In this part of the study, five lattice structs with various pore sizes, with two volume fractions for each, and shapes (ellipsoidal, helical, X-shape, trapezoidal, and triangular) were designed and manufactured using selective laser sintering (SLS) additive manufacturing technology. Mechanical properties were tested through uniaxial compression, and the apparent stress-strain curves were analyzed. The results showed that the compression tests revealed both monotonic and non-monotonic stress-strain curves, indicating different compression behaviors among the structures. The helical structure exhibited the highest resistance to compression, while other structures showed similarities in their mechanical properties. In Part II of this study provides a comprehensive analysis of these findings, emphasizing the potential of purpose-designed porous structures for various engineering applications.
Rocznik
Strony
419--426
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok
  • Technology Applied Sp. z o.o., Wiejska 42/3, 15-509 Sobolewo, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok
Bibliografia
  • 1. Ruiz de Galarreta S, Jeffers JRT, Ghouse S. A validated finite ele-ment analysis procedure for porous structures. Mater Des. 2020 Apr 1;189:108546.
  • 2. Guerra Silva R, Torres MJ, Zahr Viñuela J. A Comparison of Minia-ture Lattice Structures Produced by Material Extrusion and Vat Pho-topolymerization Additive Manufacturing. Polymers (Basel) [Internet]. 2021 Jul 1 [cited 2023 Jan 30];13(13). Available from: https://pubmed.ncbi.nlm.nih.gov/34208960/
  • 3. Cipriani CE, Ha T, Martinez Defilló OB, Myneni M, Wang Y, Benjamin CC, et al. Structure–Processing–Property Relationships of 3D Print-ed Porous Polymeric Materials. ACS Mater Au. 2021 Sep 8;1(1): 69–80.
  • 4. Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front Bioeng Biotechnol. 2020 Jun 17;8:609.
  • 5. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018 Jan 1;21(1):22–37.
  • 6. Gadomska-Gajadhur A, Łojek K, Szymaniak M, Gadomska A. Mate-riały porowate do regeneracji tkanki chrzęstnej i kostnej. Wyr Med. 2018;3.
  • 7. Kruk A, Gadomska-Gajadhur A, Ruskowski P, Chwojnowski A, Synoradzki L. Otrzymywanie polilaktydowych rusztowań komórko-wych o strukturze gąbczastej – badania wstępne i optymalizacja pro-cesu. Polimery. T. 62. 2017;2(2):118–26.
  • 8. Mierzejewska Ż. Technologia SLS – charakterystyka i zastosowanie selektywnego spiekania laserowego w inżynierii biomedycznej. J Technol Exploit Mech Eng. 2015;1:178–90.
  • 9. Maconachie T, Leary M, Lozanovski B, Zhang X, Qian M, Faruque O, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des [Internet]. 2019 Dec 1 [cited 2023 Jun 16];183(10):108137. Available from: https://dx.doi.org/10.1115/1.4037305
  • 10. Maconachie T, Leary M, Lozanovski B, Zhang X, Qian M, Faruque O, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des [Internet]. 2019;183:108137. Available from: https://doi.org/10.1016/j.matdes.2019.108137
  • 11. Uribe-Lam E, Treviño-Quintanilla CD, Cuan-Urquizo E, Olvera-Silva O. Use of additive manufacturing for the fabrication of cellular and lattice materials: a review. https://doi.org/101080/1042691420201819544 [Internet]. 2020 [cited 2023 Jun 16];36(3):257–80. Available from: https://www.tandfonline.com/doi/abs/10.1080/10426914.2020.1819544
  • 12. Tao W, Leu MC. Design of lattice structure for additive manufactur-ing. Int Symp Flex Autom ISFA 2016. 2016 Dec 16;325–32.
  • 13. Bhat C, Kumar A, Lin SC, Jeng JY. Design, fabrication, and proper-ties evaluation of novel nested lattice structures. Addit Manuf. 2023 Apr 25;68:103510.
  • 14. Kantaros A, Piromalis D. Fabricating Lattice Structures via 3D Print-ing: The Case of Porous Bio-Engineered Scaffolds. Appl Mech 2021, Vol 2, Pages 289-302 [Internet]. 2021 May 25 [cited 2023 Jun 16];2(2):289–302. Available from: https://www.mdpi.com/2673-3161/2/2/18/htm
  • 15. Yuan S, Li S, Zhu J, Tang Y. Additive manufacturing of polymeric composites from material processing to structural design. Compos Part B Eng [Internet]. 2021;219(April):108903. Available from: https://doi.org/10.1016/j.compositesb.2021.108903
  • 16. Hossain U, Ghouse S, Nai K, Jeffers JR. Controlling and testing anisotropy in additively manufactured stochastic structures. Addit Manuf. 2021 Mar 1;39:101849.
  • 17. Pan C, Han Y, Lu J. Design and Optimization of Lattice Structures: A Review. Appl Sci 2020, Vol 10, Page 6374 [Internet]. 2020 Sep 13 [cited 2023 Jun 16];10(18):6374. Available from: https://www.mdpi.com/2076-3417/10/18/6374/htm
  • 18. Wang P;, Yang F;, Zhao J, Wang P, Yang F, Zhao J. Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Load-ing. Mater 2022, Vol 15, Page 1949 [Internet]. 2022 Mar 6 [cited 2022 Aug 5];15(5):1949. Available from: https://www.mdpi.com/1996-1944/15/5/1949/htm
  • 19. Beloshenko V, Beygelzimer Y, Chishko V, Savchenko B, Sova N, Verbylo D, et al. Mechanical Properties of Thermoplastic Polyure-thane-Based Three-Dimensional-Printed Lattice Structures: Role of Build Orientation, Loading Direction, and Filler. 3D Print Addit Manuf [Internet]. 2021 May 14 [cited 2021 Nov 4];3dp.2021.0031. Available from: https://www.liebertpub.com/doi/abs/10.1089/3dp.2021.0031
  • 20. Li S, Yuan S, Zhu J, Zhang W, Tang Y, Wang C, et al. Optimal and adaptive lattice design considering process-induced material anisot-ropy and geometric inaccuracy for additive manufacturing. Struct Multidiscip Optim. 2022 Jan 1;65(1):1–16.
  • 21. Song J, Wang Y, Zhou W, Fan R, Yu B, Lu Y, et al. Topology optimi-zation-guided lattice composites and their mechanical characteriza-tions. Compos Part B Eng. 2019 Mar 1;160:402–11.
  • 22. Bahrami Babamiri B, Askari H, Hazeli K. Deformation mechanisms and post-yielding behavior of additively manufactured lattice struc-tures. Mater Des. 2020 Mar 1;188.
  • 23. Yavas D, Liu Q, Zhang Z, Wu D. Design and fabrication of architect-ed multi-material lattices with tunable stiffness, strength, and energy absorption. Mater Des [Internet]. 2022 May 1 [cited 2022 Nov 3];217:110613. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264127522002349
  • 24. Yang L, Yan C, Cao W, Liu Z, Song B, Wen S, et al. Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater. 2019 Dec 1;181:49–66.
  • 25. Park JH, Park K. Compressive behavior of soft lattice structures and their application to functional compliance control. Addit Manuf. 2020 May 1;33:101148.
  • 26. Zhang L, Lifton J, Hu Z, Hong R, Feih S. Influence of geometric defects on the compression behaviour of thin shell lattices fabricated by micro laser powder bed fusion. Addit Manuf [Internet]. 2022 Oct 1 [cited 2022 Dec 20];58:103038. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214860422004304
  • 27. Zhao Z, Wu Z, Yao D, Wei Y, Li J. Mechanical properties and failure mechanisms of polyamide 12 gradient scaffolds developed with se-lective laser sintering. J Mech Behav Biomed Mater. 2023 Jul 1;143:105915.
  • 28. Han C, Li Y, Wang Q, Wen S, Wei Q, Yan C, et al. Continuous functionally graded porous titanium scaffolds manufactured by selec-tive laser melting for bone implants. J Mech Behav Biomed Mater. 2018 Apr 1;80:119–27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1161f44-dbfd-4d5b-93b9-a70146a58137
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.