PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antibacterial activity of iron oxide nanoparticles synthesized by co-precipitation technology against Bacillus cereus and Klebsiella pneumoniae

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the synthesis and characterization of iron oxide nanoparticles (Fe3 O4 -NPs) for their antibacterial potential against Bacillus cereus and Klebsiella pneumonia by modified disc diffusion and broth agar dilution methods. DLS and XRD results revealed the average size of synthesized Fe3 O4 -NPs as 24 nm while XPS measurement exhibited the spin-orbit peak of Fe 2p3/2 binding energy at 511 eV. Fe3 O4 -NPs inhibited the growth of K. pneumoniae and B. cereus in both liquid and soild agar media, and displayed 26 mm and 22 mm zone of inhibitions, respectively. MIC of Fe3 O4 -NPs was found to be 5 μg/mL against these strains. However, MBC for these strains was observed at 40 μg/mL concentration of Fe3 O4 -NPs for exhibiting 40–50% loss in viable bacterial cells and 80 μg/mL concentration of Fe3 O4 -NPs acted as bactericidal for causing 90–99% loss in viability. Hence, these nanoparticles can be explored for their additional antimicrobial and biomedical applications.
Rocznik
Strony
110--115
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
autor
  • King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
autor
  • Ibn Sina National College for Medical Sciences, Department of Biochemistry, Jeddah-21418, Kingdom of Saudi Arabia
autor
  • King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
autor
  • Ibn Sina National College for Medical Sciences, Department of Biochemistry, Jeddah-21418, Kingdom of Saudi Arabia
autor
  • King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
autor
  • King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
  • King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
Bibliografia
  • 1. Singh, R., Smitha, M. S. & Singh, S. P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 14(7), 4745–4756. DOI: 10.1166/jnn.2014.9527.
  • 2. Stubbings, W. & Labischinski, H. (2009). New antibiotics for antibiotic-resistant bacteria. Biol. Rep. 17(1) 40–46. DOI: 10.3410/B1-40.
  • 3. Patrascu, J.M., Nedelcu, I.A., Sonmez, M., Ficai, D., Ficai, A. & Vasile, B.S. (2015). Composite scaffolds based on silver nanoparticles for biomedical applications. J. Nanomat. 8 pages. DOI: http://dx.doi.org/10.1155/2015/587989.
  • 4. Caamano, M. A., Carrillo-Morales, M. & Olivares-Trejo, J. J. (2016). Iron oxide nanoparticle improve the antibacterial activity of erythromycin. J. Bacteriol. Parasitol. 7(4), 267–270. DOI: 10.4172/2155-9597.1000267.
  • 5. Kalishwaralal, K., Barathmanikanth, S., Pandian, S. R. K., Deepak, V. & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Coll. Surf. B: Biointerf. 79(2), 340–344. DOI: 10.1016/j.colsurfb.2010.04.014.
  • 6. Mihu, M. R., Sandkovsky, U., Han, G., Friedman, J. M., Nosanchuk, J. D. & Martinez, L. R. (2010). The use of nitric oxide releasing nanoparticles as a treatment against Acinetobacter baumannii in wound infections. Virulence 1(2), 62–67. DOI: 10.4161/viru.1.2.10038.
  • 7. Satar, R., Syed, I. A., Rasool, M., Pushparaj, P. N. & Ansari, S. A. (2016). Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology. Pol. J. Chem. Technol. 18(2), 9–12. DOI: https://doi.org/10.1515/pjct-2016-0022.
  • 8. Fang, C. T., Lai, S. Y., Yi, W. C., Hsueh, P. R., Liu, K. L. & Chang, S. C. (2007). Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin. Infect. Dis. 45(3), 284–290. DOI: 10.1086/519262.
  • 9. Donlan, R. M. (2001). Biofilms and device-associated infections. Emer. Inf. Dis. 7(2), 277–281. DOI: 10.3201/eid0702.700277.
  • 10. Jagnow, J. & Clegg, S. (2003). Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix and collagen-coated surfaces. Microbiology 149(9), 2397–2405. DOI: 10.1099/mic.0.26434-0.
  • 11. Ash, C., Farrow, J. A., Dorsch, M., Stackenbrandt, E. & Collins, M. D. (1991). Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase of 16S rRNA. Int. J. Syst. Bacteriol. 41(3), 343–346. DOI: 10.1099/00207713-41-3-343.
  • 12. Bottone, E. J. (2010). Bacillus Cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23(2), 382–398. DOI: 10.1128/CMR.00073-09.
  • 13. Wu, W., He, Q. & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nan. Res. Lett. 3(11), 397–415. DOI: 10.1007/s11671-008-9174-9.
  • 14. Mohapatra, M. & Anand, S. (2010). Synthesis and applications of nanostructured iron oxides/hydroxides-a review. Int. J. Eng. Sci. Technol. 2(8), 127–146. DOI: http://dx.doi.org/10.4314/ijest.v2i8.63846.
  • 15. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J. & Ding, H. (2008). Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 112(30), 11336–11339. DOI: 10.1021/jp801632p.
  • 16. Ahmed, T., Phul, R., Khatoon, N. & Sardar, M. (2017). Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. New J. Chem. 41(5), 2055–2061. DOI: 10.1039/C7NJ00103G.
  • 17. Irshad, R., Tahir, K., Li, B., Ahmad, A., Siddiqui, A. & Nazir, S. (2017). Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B 170(4), 241–246. DOI: 10.1016/j.jphotobiol.2017.04.020.
  • 18. Mahdavi, M., Ahmad, M. B., Haron, M. J., Gharayebi, Y., Shameli, K. & Nadi, B. (2013). Fabrication and characterization of SiO2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution. J. Inorg. Organomet. Polym. Mater. 23(3), 599–607. DOI: 10.1007/s10904-013-9820-2.
  • 19. Majeed, M. I., Guo, J., Yan, W. & Tan, B. (2016). Preparation of magnetic iron oxide nanoparticles (MIONS) with improved saturation magnetization using multifunctional polymer ligand. Polymers 8(11), 392–408. DOI: 10.3390/polym8110392.
  • 20. Gotic, M. & Music, S. (2007). Mossbauer FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Nanostruct. 834–836(7), 445–453. DOI: https://doi.org/10.1016/j.molstruc.2006.10.059.
  • 21. Zhang, F., Wang, P., Koberstein, J., Khalid, S. & Chan, S. W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563(1–3), 74–82. DOI: https://doi.org/10.1016/j.susc.2004.05.138.
  • 22. Bavand, R., Yelon, A. & Sacher, E. (2015). X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite. Appl. Surf. Sc. 355(5), 279–289. DOI: https://doi.org/10.1016/j.apsusc.2015.06.202.
  • 23. Yamashita, T. & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449. DOI: https://doi.org/10.1016/j.apsusc.2007.09.063.
  • 24. Rahman, M. M., Khan, S. B., Faisal, M., Rub, M. A., Al-Youbi, M. A. & Asiri, A. M. (2012). Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2-Co3O4 nanocubes in tablet dosage forms. Talanta 99(2), 924–931. DOI: https://doi.org/10.1016/j.talanta.2012.07.060.
  • 25. Kon, K. & Rai, M. (2013). Metallic nanoparticles: mechanism of antibacterial action and influencing factors. J. Comp. Clin. Path. Res. 2(3), 160–2174. DOI: 10.4178/jccph/e2015020.
  • 26. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M. & Morelli, G. (2015). Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874. DOI: 10.3390/molecules20058856.
  • 27. Li, H., Chen, Q., Zhao, J. & Urmila, K. (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep. 5(5), 11033–11040. DOI: 10.1038/srep11033.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1158da7-94e8-40c3-8cb5-7b8b906a6875
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.