PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of IQT on research in ICT. Part 4

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advanced Quantum Information Technologies subject for Ph.D. students in Electronics Engineering and ICT consists of three parts. A few review lectures concentrate on topics which may be of interest for the students due to their fields of research done individually in their theses. The lectures indicate the diversity of the QIT field, resting on physics and applied mathematics, but possessing wide application range in quantum computing, communications and metrology. The individual IQT seminars prepared by Ph.D. students are as closely related to their real theses as possible. Important part of the seminar is a discussion among the students. The task was to enrich, possibly with a quantum layer, the current research efforts in ICT. And to imagine, what value such a quantum enrichment adds to the research. The result is sometimes astonishing, especially in such cases when quantum layer may be functionally deeply embedded. The final part was to write a short paragraph to a common paper related to individual quantum layer addition to the own research. The paper presents some results of such experiment and is a continuation of previous papers of the same style.
Twórcy
autor
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
autor
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
Bibliografia
  • [1] F. Ahmed, “Quantum dots and their applications, the onyx review,” The Interdisciplinary Research Journal, vol. 6, no. 1, pp. 1-9, 2020.
  • [2] D. Bera, L. Qian, and P. H. Holloway, “Semiconducting quantum dots for bioimaging,” in Drug Delivery Nanoparticles Formulation and Characterization. CRC Press, 2016, pp. 369-386.
  • [3] H. Alehdaghi, E. Assar, B. Azadegan, J. Baedi, and A. A. Mowlavi, “Investigation of optical and structural properties of aqueous cds quantum dots under gamma irradiation,” Radiation Physics and Chemistry, vol. 166, p. 108476, 2020.
  • [4] M. Al Huwayz, D. Jameel, W. M. de Azevedo, J. F. Felix, N. Al Saqri, O. Lemine, S. A. Alrub, and M. Henini, “Effects of gamma radiation on the electrical properties of inas/ingaas quantum dot-based laser structures grown on gaas and si substrates by molecular beam epitaxy,” Physical Chemistry Chemical Physics, vol. 26, no. 1, pp. 445-454, 2024.
  • [5] A. Sofronov, R. M. Balagula, D. A. Firsov, L. Vorobjev, A. A. Tonkikh, H. Sarkisyan, D. B. Hayrapetyan, L. Petrosyan, and E. M. Kazaryan, “Absorption of far-infrared radiation in ge/si quantum dots,” Semiconductors, vol. 52, pp. 59-63, 2018.
  • [6] N. Lambert, E. Giguère, P. Menczel, B. Li, P. Hopf, G. Suárez, M. Gali, J. Lishman, R. Gadhvi, R. Agarwal et al., “Qutip 5: The quantum toolbox in python,” arXiv preprint arXiv:2412.04705, 2024.
  • [7] J. Y. Park, E. J. Jeon, Y.-H. Choa, and B. S. Kim, “Optical and structural properties of znse quantum dot with europium,” Journal of Luminescence, vol. 208, pp. 145-149, 2019.
  • [8] Y. Zhang, X. Wang, K. Xu, F. Zhai, J. Shu, Y. Tao, J. Wang, L. Jiang, L. Yang, Y. Wang et al., “Near-unity energy transfer from uranyl to europium in a heterobimetallic organic framework with record-breaking quantum yield,” Journal of the American Chemical Society, vol. 145, no. 24, pp. 13 161-13 168, 2023.
  • [9] R. Zhou, Q. Zhao, K.-K. Liu, Y.-J. Lu, L. Dong, and C.-X. Shan, “Europium-decorated zno quantum dots as a fluorescent sensor for the detection of an anthrax biomarker,” Journal of Materials Chemistry C, vol. 5, no. 7, pp. 1685-1691, 2017.
  • [10] e. a. Himalay Kolavada, “Unraveling quantum capacitance in superca-pacitors: Energy storage applications.” 2024.
  • [11] B. Bharti, Y. Kumar, M. Gupta, and S. Sharma, “Study of quantum capacitance of pure and functionalized nb2c and ti2c mxenes for supercapacitor applications,” ECS Transactions, vol. 107, no. 1, p. 1751, apr 2022. [Online]. Available: https://dx.doi.org/10.1149/10701.1751ecst
  • [12] M. F. R. Alicki, “Entanglement boost for extractable work from ensem-bles of quantum batteries”, physical review.” 2013.
  • [13] J. Quach, G. Cerullo, and T. Virgili, “Quantum batteries: The future of energy storage?” Joule, vol. 7, no. 10, pp. 2195-2200, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2542435123003641
  • [14] N. S. Yaccob and M. M. Yunus, “Language games in teaching and learning english grammar: A literature review,” Arab World English Journal, vol. 10, pp. 209-217, 3 2019. [Online]. Available: https://awej.org/language-games-in-teaching-and-learning-english-grammar-a-literature//-review/
  • [15] J. D. Weisz, M. Ashoori, and Z. Ashktorab, “Entanglion: A board game for teaching the principles of quantum computing,” in CHI PLAY 2018 - Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play. Association for Computing Machinery, Inc, 2018, pp. 523-534.
  • [16] H. Khosravi, S. B. Shum, G. Chen, C. Conati, Y. S. Tsai, J. Kay, S. Knight, R. Martinez-Maldonado, S. Sadiq, and D. Gaˇsevi´c, “Explainable artificial intelligence in education,” Computers and Education: Artificial Intelligence, vol. 3, pp. 1-22, 2022.
  • [17] A. Parmaxi and A. A. Demetriou, “Augmented reality in language learning: A state-of-the-art review of 2014-2019,” Journal of Computer Assisted Learning, pp. 861-875, 2020.
  • [18] E. Grant, T. S. Humble, and B. Stump, “Benchmarking quantum annealing controls with portfolio optimization,” Phys. Rev. Appl., vol. 15, p. 014012, Jan 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.15.014012
  • [19] T. Krauss and J. McCollum, “Solving the network shortest path problem on a quantum annealer,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1-12, 2020.
  • [20] P. Pashaei, H. Amiri, R. Haenel, P. L. S. Lopes, and L. Chrostowski, “Educational resources for promoting talent in quantum computing,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp. 317-322.
  • [21] M. Somasundaram, K. A. M. Junaid, and S. Mangadu, “Artificial Intelligence (AI) Enabled Intelligent Quality Management System (IQMS) For Personalized Learning Path,” Procedia Computer Science, vol. 172, pp. 438-442, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050920314253
  • [22] A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language processing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 10, pp. 4291-4308, 2021.
  • [23] C.-C. Lin, A. Y. Q. Huang, and S. J. H. Yang, “A Review of AI-Driven Conversational Chatbots Implementation Methodologies and Challenges (1999-2022),” Sustainability, vol. 15, no. 5, 2023. [Online]. Available: https://www.mdpi.com/2071-1050/15/5/4012
  • [24] T. N. Fitria, “Artificial intelligence (ai) in education: Using ai tools for teaching and learning process,” Prosiding Seminar Nasional & Call for Paper STIE AAS, vol. 4, no. 1, pp. 134-147, 2021. [Online]. Available: https://www.blackboard.com/teaching-learning/learning-
  • [25] B. Wang, P. L. P. Rau, and T. Yuan, “Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale,” Behaviour and Information Technology, vol. 42, no. 9, pp. 1324-1337, 2023.
  • [26] M. Ciolacu, A. F. Tehrani, L. Binder, and P. M. Svasta, “Education 4.0 - artificial intelligence assisted higher education: Early recognition system with machine learning to support students’ success,” in 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), 2018, pp. 23-30.
  • [27] S. Kumar, S. Simran, and M. Singh, “Quantum intelligence: Merging ai and quantum computing for unprecedented power,” in 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, 2024, pp. 1-7.
  • [28] A. Parmaxi and A. A. Demetriou, “Augmented reality in language learning: A state-of-the-art review of 2014-2019,” Journal of Computer Assisted Learning, vol. 36, no. 6, pp. 861-875, 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12486
  • [29] D. Azimova and D. Solidjonov, “Learning English Language as a Second Language with Augmented Reality,” Kokand University Herald, vol. 1, pp. 112-115, 2023.
  • [30] B. Huynh, J. Orlosky, and T. H¨ollerer, “In-situ labeling for augmented reality language learning,” in 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 2019, pp. 1606-1611.
  • [31] F. Draxler, A. Labrie, A. Schmidt, and L. L. Chuang, “Augmented reality to enable users in learning case grammar from their real-world interactions,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, ser. CHI ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1-12. [Online]. Available: https://doi.org/10.1145/3313831.3376537
  • [32] K. Ravichandran, B. A. Virgin, S. Patil, G. Fatma, M. Rengarajan, and B. K. Bala, “Gamifying language learning: Applying augmented reality and gamification strategies for enhanced english language acquisition,” in 2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), 2024, pp. 1-6.
  • [33] V. Kumar, G. Bass, C. Tomlin, and J. Dulny, “Quantum annealing for combinatorial clustering,” Quantum Information Processing, vol. 17, no. 2, p. 39, 2018. [Online]. Available: https://doi.org/10.1007/s11128-017-1809-2
  • [34] H. Wang, W. Wang, Y. Liu, and B. Alidaee, “Integrating machine learning algorithms with quantum annealing solvers for online fraud detection,” IEEE Access, vol. 10, pp. 75 908-75 917, 2022.
  • [35] K. Monteiro, R. Vatsal, N. Chulpongsatorn, A. Parnami, and R. Suzuki, “Teachable reality: Prototyping tangible augmented reality with everyday objects by leveraging interactive machine teaching,” in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, ser. CHI ’23. New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3544548.3581449
  • [36] G.-J. Hwang and S.-Y. Chien, “Definition, roles, and potential research issues of the metaverse in education: An artificial intelligence perspective,” Computers and Education: Artificial Intelligence, vol. 3, p. 100082, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666920X22000376
  • [37] B. Dowling and B. Wimalasiri, “Quantum-secure hybrid communication for aviation infrastructure,” Dept. Comput. Sci., Univ. Sheffield, 2024.
  • [38] H. M. et al., “Quantum computing applications for flight trajectory optimization,” qBraid Co., 2023.
  • [39] A. M. Mori, “Replanning flight schedules using quantum computing,” Faculdade de Engenharia da Universidade do Porto, 2022.
  • [40] X.-J. Y. et al., “Quantum support vector machines for aerodynamic classification,” Shanghai Jiao Tong University, 2022.
  • [41] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, 2006.
  • [42] J. F. M.-W. Yi-hua Tang, Norman B. Belecki, “A practical josephson voltage standard at one volt,” 2001.
  • [43] M. Brooks, “Beyond quantum supremacy: the hunt for useful quantum computers,” Nature, vol. 574, pp. 19-21, 10 2019.
  • [44] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Applied Physics Reviews, vol. 6, no. 2, p. 021314, 05 2019. [Online]. Available: https://doi.org/10.1063/1.5088164
  • [45] J. Stuart, R. Panock, C. Bruzewicz, J. Sedlacek, R. McConnell, I. Chuang, J. Sage, and J. Chiaverini, “Chip-integrated voltage sources for control of trapped ions,” Phys. Rev. Appl., vol. 11, p. 024010, Feb 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.11.024010
  • [46] M. M. e. a. Mehta K.K., Zhang C., “Integrated optical multi-ion quantum logic,” Nature, vol. 586, p. 533-537, 2020. [Online]. Available: https://www.nature.com/articles/s41586-020-2823-6
  • [47] J. Anders, M. Babaie, J. C. Bardin, I. Bashir, G. Billiot, E. Blokhina, S. Bonen, E. Charbon, J. Chiaverini, I. L. Chuang, C. Degenhardt, D. Englund, L. Geck, L. Le Guevel, D. Ham, R. Han, M. I. Ibrahim, D. Krüger, K. M. Lei, A. Morel, D. Nielinger, G. Pillonnet, J. M. Sage, F. Sebastiano, R. B. Staszewski, J. Stuart, A. Vladimirescu, P. Vliex, and S. P. Voinigescu, “Cmos integrated circuits for the quantum information sciences,” IEEE Transactions on Quantum Engineering, vol. 4, pp. 1-30, 2023.
  • [48] J. Bardin, “Beyond-classical computing using superconducting quantum processors,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC), vol. 65, 2022, pp. 422-424.
  • [49] G. Q. AI and Collaborators, “Quantum error correction below the surface code threshold,” Nature, 2024.
  • [50] P. Giounanlis, X. Wu, A. Sokolov, N. Petropoulos, E. Koskin, I. Bashir, D. Leipold, R. B. Staszewski, and E. Blokhina, “Cmos charge qubits and qudits: entanglement entropy and mutual information as an optimization method to construct cnot and swap gates,” Semiconductor Science and Technology, vol. 36, no. 9, p. 095014, jul 2021. [Online]. Available: https://dx.doi.org/10.1088/1361-6641/abe550
  • [51] V. N. Ciriano-Tejel, M. A. Fogarty, S. Schaal, L. Hutin, B. Bertrand, L. Ibberson, M. F. Gonzalez-Zalba, J. Li, Y.-M. Niquet, M. Vinet, and J. J. Morton, “Spin readout of a cmos quantum dot by gate reflectometry and spin-dependent tunneling,” PRX Quantum, vol. 2, p. 010353, Mar 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.2.010353
  • [52] T. Meunier, L. Hutin, B. Bertrand, Y. Thonnart, G. Pillonnet, G. Billiot, H. Jacquinot, M. Cassé, S. Barraud, Y.-J. Kim, V. Mazzocchi, A. Amisse, H. Bohuslavskyi, L. Bourdet, A. Crippa, X. Jehl, R. Maurand, Y.-M. Niquet, M. Sanquer, B. Venitucci, B. Jadot, E. Chanrion, P.-A. Mortemousque, C. Spence, M. Urdampilleta, S. De Franceschi, and M. Vinet, “Towards scalable quantum computing based on silicon spin,” in 2019 Symposium on VLSI Technology, 2019, pp. T30-T31.
  • [53] S. Bonen, U. Alakusu, Y. Duan, M. J. Gong, M. S. Dadash, L. Lucci, D. R. Daughton, G. C. Adam, S. Iordănescu, M. Păşteanu, I. Giangu, H. Jia, L. E. Gutierrez, W. T. Chen, N. Messaoudi, D. Harame, A. Müller, R. R. Mansour, P. Asbeck, and S. P. Voinigescu, “Cryogenic characterization of 22-nm fdsoi cmos technology for quantum computing ics,” IEEE Electron Device Letters, vol. 40, no. 1, pp. 127-130, 2019.
  • [54] J. Anders, T. Pfau, J. Wrachtrup, M. Plenio, F. Jelezko, and K. Lips, “Towards ic-based quantum sensing - recent achievements and future research trends,” in 2018 48th European Solid-State Device Research Conference (ESSDERC), 2018, pp. 122-125.
  • [55] S. Y. e. a. Luo W., Cao L., “Recent progress in quantum photonic chips for quantum communication and internet,” Light Sci Appl, vol. 12, p. 175, 2023. [Online]. Available: https://www.nature.com/articles/s41377-023-01173-8
  • [56] C. T. e. a. Chen YA., Zhang Q., “An integrated space-to-ground quantum communication network over 4,600 kilometres,” Nature, vol. 589, pp. 214-219, 2021. [Online]. Available: https://www.nature.com/articles/s41586-020-03093-8
  • [57] F. I. e. a. Llewellyn D., Ding Y., “Chip-to-chip quantum teleportation and multi-photon entanglement in silicon,” Nature Physics, vol. 16, pp. 148-153, 2020. [Online]. Available: https://www.nature.com/articles/s41567-019-0727-x
  • [58] L. A. e. a. Wang J., Sciarrino F., “Integrated photonic quantum technologies,” Nature Photonics, vol. 14, pp. 273-284, 2020. [Online]. Available: https://www.nature.com/articles/s41566-019-0532-1
  • [59] C. F. D. Faurby, Y. Wang, S. Paesani, F. Ruf, N. Volet, M. J. Heck, A. D. Wieck, A. Ludwig, L. Midolo, and P. Lodahl, “Quantum-dot single-photon sources processed on silicon-nitride integrated circuits,” in 2023 Conference on Lasers and Electro-Optics (CLEO), 2023, pp. 1-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a11296ab-9513-48fc-9fb6-4ee6d417a94f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.