PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intravenous glucose tolerance test hardware implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Blood glucose level monitoring and control is of utmost importance to millions of people who have been diagnosed with diabetes or similar illnesses. One of the conventional tests for measuring how the human body breaks down glucose is IVGTT, the Intravenous Glucose Tolerance Test. The difficulty of computing the models of glucose-insulin interaction presents an issue when attempting to implement them in embedded hardware. The Metabolic P (MP), contrary to other models, does not require solving differential equations to compute, thus it could be an effective modelling approach for real-time applications. The present paper proves that MP system methodology-based IVGTT implementation in the Field Programmable Gate Arrays (FPGA) technology is reasonably precise and sufficiently flexible to be used effectively in multi-user scenarios. Presentation of the state-of-the-art focuses on glucose-insulin interaction models, glucose monitoring systems and MP system implementation techniques. Methods for MP system computations and techniques for their implementation on FPGA, together with the original unified MP system implementation technique, have been presented in this paper. The results of an elaborate investigation into the IVGTT MP systems, as well as their single and unified MP implementation techniques have also been considered. It is shown that the techniques developed are applicable to all known IVGTT MP systems, and can achieve RMSE not higher than 15% using a word length of at least 32 bits. The novel MP system combined quality metrics and its pictorial representation allow the analysis of various implementation characteristics. Compared to the unified pipelined IVGTT MP system implementation technique, the developed unified combinational technique ensures a 2‒3 times higher speed.
Rocznik
Strony
1245--1255
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Electronic Systems, Vilnius Gediminas Technical University, Naugarduko 41, 03227 Vilnius, Lithuania
autor
  • Department of Electronic Systems, Vilnius Gediminas Technical University, Naugarduko 41, 03227 Vilnius, Lithuania
autor
  • Department of Electronic Systems, Vilnius Gediminas Technical University, Naugarduko 41, 03227 Vilnius, Lithuania
  • Department of Electronic Systems, Vilnius Gediminas Technical University, Naugarduko 41, 03227 Vilnius, Lithuania
Bibliografia
  • [1] K. Lewenstein, M. Jamroży, and T. Leyko, “The use of recurrence plots and beat recordings in chronic heart failure detection”, Bull. Pol. Ac.: Tech. 64 (2), 339–345 (2016).
  • [2] E. Bekiari et al., “Artificial pancreas treatment for outpatients with type 1 diabetes: Systematic review and meta-analysis”, BMJ Clin. Res. 361, 1–15 (2018).
  • [3] American Diabetes Association, “Standards of medical care in diabetes – 2013”, Diabetes Care 36 (Supplement 1), S11–S66 (2013).
  • [4] American Diabetes Association, “Standards of medical care in diabetes – 2014”, Diabetes Care 37 (Supplement 1), S14–S80 (2014).
  • [5] G. Cappon, G. Acciaroli, M. Vettoretti, A. Facchinetti, and G. Sparacino, “Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment”, Electronics 6 (3), 65 (2017).
  • [6] P.M. Jauslin, M.O. Karlsson, and N. Frey, “Identification of the mechanism of action of a glucokinase activator from oral glucose tolerance test data in type 2 diabetic patients based on an integrated glucose–insulin model”, J. Clin. Pharmacol. 52 (12), 1861–1871 (2012).
  • [7] V. Manca, L. Marchetti, and R. Pagliarini, “MP modeling of glucose-insulin interactions in the intravenous glucose tolerance test”, Int. J. Nat. Comp. Res. 2 (3), 13–24 (2011).
  • [8] D. Kulakovskis, T. Sledevic, A. Gedminas, and D. Navakauskas, “Alternative implementations of metabolic P system in FPGA”, in 2016 IEEE 4th workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 2016, pp. 1–5.
  • [9] D. Kulakovskis and D. Navakauskas, “Automated metabolic P system placement in FPGA”, Electr. Control Commun. Eng. 10 (Jul.), 5–12 (2016).
  • [10] A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang, and P. Liljeberg, “Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach”, Futur. Gener. Comp. Syst. 78, 641–658, 2018.
  • [11] P. Keith-Hynes, B. Mize, A. Robert, and J. Place, “The diabetes assistant: A smartphone-based system for real-time control of blood glucose”, Electronics 3 (4), 609–623 (2014).
  • [12] N. Sultan, “Making use of cloud computing for healthcare provision: Opportunities and challenges”, Int. J. Inf. Manage. 34 (2), 177–184 (2014).
  • [13] F. Ortega-Zamorano, J.M. Jerez, D.U. Muñoz, R.M. Luque-Baena, and L. Franco, “Efficient implementation of the back-propagation algorithm in fpgas and microcontrollers”, IEEE Trans. Neural Netw. Learn. Syst. 27 (Sep.), 1840–1850 (2016).
  • [14] C. Cobelli, E. Renard, and B. Kovatchev, “Artificial pancreas: Past, present, future”, Diabetes 60 (11), 2672–2682 (2011).
  • [15] P. Li, L. Yu, Q. Fang, and S.-Y. Lee, “A simplification of Cobelli’s glucose–insulin model for type 1 diabetes mellitus and its FPGA implementation”, Med. Biol. Eng. Comput. 54 (10), 1563–1577 (2016).
  • [16] R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. Cobelli, “Quantitative estimation of insulin sensitivity”, Am. J. Physiol. 236 (6), 667–677 (1979).
  • [17] G. Toffolo, R.N. Bergman, D.T. Finegood, C.R. Bowden, and C. Cobelli, “Quantitative estimation of beta cell sensitivity to glucose in the intact organism: A minimal model of insulin kinetics in the dog”, Diabetes 29 (12), 979–990 (1980).
  • [18] J. Sturis, K.S. Polonsky, E. Mosekilde, and E. Van Cauter, “Computer model for mechanisms underlying ultradian oscillations of insulin and glucose”, Am. J. Physiol.-Endocrinol. Metab. 260 (5), 801–809 (1991).
  • [19] I. M. Tolic, E. Mosekilde, and J. Sturis, “Modeling the insulin–glucose feedback system: The significance of pulsatile insulin secretion”, J. Theor. Biol. 207 (3), 361–375 (2000).
  • [20] K. Engelborghs, V. Lemaire, J. Belair, and D. Roose, “Numerical bifurcation analysis of delay differential equations arising from physiological modeling”, J. Math. Biol. 42 (4), 361–385 (2001).
  • [21] D. Bennett and S. Gourley, “Global stability in a model of the glucose-insulin interaction with time delay”, Eur. J. Appl. Math. 15, 203–221 (2004).
  • [22] M. Pitchaimani, P. Krishnapriya, and C. Monica, “Mathematical modeling of intra-venous glucose tolerance test model with two discrete delays”, J. Biol. Syst. 23 (4), 631–660 (2015).
  • [23] A. De Gaetano and O. Arino, “Mathematical modelling of the intravenous glucose tolerance test”, J. Math. Biol. 40 (2), 136–168 (2000).
  • [24] R. HariKumar, V. Sudhaman, and C.G. Babu, “FPGA synthesis of fuzzy (PD and PID) controller for insulin pumps in diabetes using Cadence”, Int. J. Soft Comput. Eng. 1 (6), 324–331 (2012).
  • [25] E. Ackerman, L. Gatewood, J. Rosevear, and G. Molnar, “Model studies of blood-glucose regulation”, Bull. Math. Biol. 27, 21–37 (1965).
  • [26] S.M. Gharghory and D.A. El-Dib, “Fuzzy control system for regulating the blood glucose level of diabetes patients implemented on FPGA”, J. Circuits Syst. Comput. 25 (12), 1–17 (2016).
  • [27] P.D. Vouzis, L.G. Bleris, M.G. Arnold, and M.V. Kothare, “A system-on-a-chip implementation for embedded real-time model predictive control”, IEEE Trans. Control Syst. Technol. 17 (5), 1006–1017 (2009).
  • [28] M. Ghorbani and P. Bogdan, “A cyber-physical system approach to artificial pancreas design”, in Proceedings of the 9th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, IEEE Press, 2013, pp. 1–10.
  • [29] S. Dutta and N.M. Botros, “FPGA synthesis of glucose-insulin feedback system”, in Proceedings of the International Conference on Modeling, Simulation and Visualization Methods (MSV), The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2013, pp. 1–5.
  • [30] Q.V. Nguyen, A. Caro, M. Raoux, A. Quotb, J.-B. Floderer, Y. Bornat, S. Renaud, and J. Lang, “A novel bioelectronic glucose sensor to process distinct electrical activities of pancreatic beta-cells”, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 172–175.
  • [31] J.C. Romero-Aragon, E.N. Sanchez, and A.Y. Alanis, “Glucose level regulation for diabetes mellitus type 1 patients using FPGA neural inverse optimal control”, in 2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA), IEEE, 2014, pp. 1–7.
  • [32] M. Vavouras, R.P. Duarte, A. Armato, and C.-S. Bouganis, “A hybrid ASIC/FPGA fault-tolerant artificial pancreas”, in Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), 2016 International Conference on, 2016, pp. 261–267.
  • [33] V. Manca, L. Bianco, and F. Fontana, “Evolution and oscillation in P systems: Applications to biological phenomena”, in Membrane Computing. WMC 2004. Lecture Notes in Computer Science vol. 3365, pp. 63–84, Springer-Verlag, Berlin, 2005.
  • [34] G. Paun, “Computing with membranes”, J. Comput. Syst. Sci. 6 (1), 108–143 (2000).
  • [35] R.H.G. Guiraldelli and V. Manca, “Automatic translation of MP+ V systems to register machines”, in International Conference on Membrane Computing, Springer, 2015, pp. 185–199.
  • [36] V. Manca, “Fundamentals of metabolic P systems”, in Handbook of Membrane Computing (G. Paun, G. Rozenberg, and A. Salomaa, eds.), ch. 19, pp. 489–498, Oxford University Press, 2009.
  • [37] Z. Hajduk, “Hardware implementation of hyperbolic tangent and sigmoid activation functions”, Bull. Pol. Ac.: Tech. 66 (5), 563–577 (2018).
  • [38] D. Kulakovskis, Research of Metabolic P System Field Programmable Gate Array Implementation, Doctoral dissertation, Vilnius Gediminas Technical University, 2019.
  • [39] B. Ronak and S.A. Fahmy, “Mapping for maximum performance on fpga dsp blocks”, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 35 (4), 573–585 (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1104e0d-28c6-4210-b390-911f2d8253b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.