Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The recycling processes for CFRP waste are difficult due to their complex, and multi-material composition. Consequently, there is a need for new solutions to address this issue. The focus of CFRP composite recycling processes is primarily on recovering costly carbon fibers, which are characterized by exceptional mechanical properties. Pyrolysis has been identified as an effective method for the recovery of carbon fibers without significant damage. In this study, recovered carbon fibers (rCF) were used to produce polymer concrete. The fabricated polymer concretes contained carbon fibers of varying lengths (10, 20, and 30 mm) and volume fractions of 1 and 3%. The results showed that the addition of 3% post-pyrolytic carbon fibers resulted in significant improvement in the mechanical properties of the polymer concrete. Specifically, the flexural strength increased by more than 100% compared to the polymer concrete without carbon fibers, while the compressive strength improved by more than 60%. Overall, the study demonstrates that incorporating post-pyrolytic carbon fibers in the production of polymer concretes offers a promising solution to the challenge of CFRP waste. The use of these fibers not only helps in the recovery of valuable resources but also results in significant improvement in the mechanical strength of the final product.
Czasopismo
Rocznik
Tom
Strony
167--172
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Science, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- [1] Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A., Polymer composite materials: A comprehensive review, Composite Structures 2021, 262, 113640.
- [2] Jagadeesh P., Mavinkere Rangappa S., Siengchin S., Puttegowda M., Thiagamani S.M.K., Hemath Kumar M., Oladijo O.P., Fiore V., Moure Cuadrado M.M., Sustainable recycling technologies for thermoplastic polymers and their composites: A review of the state of the art, Polymer Composites 2022, 43(9), 5831-5862.
- [3] Gonçalves R.M., Martinho A., Oliveira J.P., Recycling of reinforced glass fibers waste: Current status, Materials 2022, 15(4), 1596.
- [4] Smoleń J., Godzierz M., Olesik P., Pawlik T., Kozioł M., Utilization of CFRP waste as a filler in polyester resin-based composites, Journal of Composite Materials 2021, 55(19), 2693-2701.
- [5] Smoleń J., Olesik P., Jała J., Adamcio A., Kurtyka K., Godzierz M., Kozera R., Kozioł M., Boczkowska A., The use of carbon fibers recovered by pyrolysis from end-of-life wind turbine blades in epoxy-based composite panels, Polymers 2022, 14(14), 2925.
- [6] Butenegro J.A., Bahrami M., Abenojar J., Martínez M.Á., Recent progress in carbon fiber reinforced polymers recycling: A review of recycling methods and reuse of carbon fibers, Materials 2021, 14(21), 6401.
- [7] Abdallah R., Juaidi A., Savaş M.A., Çamur H., Albatayneh A., Abdala S., Manzano-Agugliaro F., A critical review on recycling composite waste using pyrolysis for sustainable development, Energies 2021, 14(18), 5748.
- [8] Pimenta S., Pinho S.T., Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook, Waste Management 2011, 31(2), 378-392.
- [9] Meyer L.O., Schulte K., Grove-Nielsen E., CFRP-recycling following a pyrolysis route: process optimization and potentials, Journal of Composite Materials 2009, 43(9), 1121-1132.
- [10] Babafemi A.J., Šavija B., Paul S.C., Anggraini V., Engineering properties of concrete with waste recycled plastic: A review, Sustainability 2018, 10(11), 3875.
- [11] Topcu I.B., Canbaz M., Properties of concrete containing waste glass. Cement and Concrete Research 2004, 34(2), 267-274.
- [12] Nordin N., Abdullah M.M.A.B., Tahir M.F.M., Sandu A.V., Hussin K., Utilization of fly ash waste as construction material, International Journal of Conservation Science 2016, 7(1).
- [13] Jamrozy Z., Beton i jego technologie, WN PWN, Warszawa-Kraków 2000.
- [14] Bedi R., Chandra R., Singh S.P., Mechanical properties of polymer concrete, Journal of Composites 2013, 1-12.
- [15] Kiruthika C., Prabha S.L., Neelamegam M., Different aspects of polyester polymer concrete for sustainable construction, Materials Today: Proceedings 2021, 43, 1622-1625.
- [16] Laustsen S., Hasholt M.T., Jensen O.M., Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete, Materials and Structures 2015, 48, 357-368.
- [17] Bărbuţă M., Harja M., Baran I., Comparison of mechanical properties for polymer concrete with different types of filler, Journal of Materials in Civil Engineering 2010, 22(7), 696-701.
- [18] Raza S.S., Qureshi L.A., Ali B., Raza A., Khan M.M., Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete, Structural Concrete 2021, 22(1), 334-346.
- [19] Liu B., Guo J., Zhou J., Wen X., Deng Z., Wang H., Zhang X., The mechanical properties and microstructure of carbon fibers reinforced coral concrete, Construction and Building Materials 2020, 249, 118771.
- [20] Song W., Yin J., Hybrid effect evaluation of steel fiber and carbon fiber on the performance of the fiber reinforced concrete, Materials 2016, 9(8), 704.
- [21] Reis J.M.L.D., Mechanical characterization of fiber reinforced polymer concrete, Materials Research 2005, 8, 357-360.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a103bfd5-1d25-4521-8b32-2a1dbc435635