PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of changes in the working temperature of flexible couplings on their stiffness characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article compares flexible couplings of the spider-type insert, and the tiretype insert. The influences of the volume and hardness of the elastomeric connector on the characteristics of this type of coupling, as well as the course of the change of the stiffness coefficient as a result of changes in the operating temperature, are presented. In drive systems, flexible couplings undergo very frequent changes within a wide range of operating temperatures, which causes a change in the dynamic parameters of the flexible couplings during operation.
Czasopismo
Rocznik
Strony
177--186
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Al-Hussain, K.M. Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment. Journal of Sound and Vibration. 2003. Vol. 266. No. 2. P. 217-234.
  • 2. Bolshakov, V.I. & Butsukin, V.V. Parameter fluctuations in electromechanical drives with gaps in the elastic coupling. Steel in Translation. 2014. No. 44. P. 333-336.
  • 3. Bossio, J.M. & Bossio, G. & De Angelo, C. Angular Misalignment in Induction Motors with Flexible Coupling. In: Proceedings of IEEE Industrial Electronics Conference, 2009. IECON’09. Porto, 2009. P. 1033-1038.
  • 4. Dean, A. Taming vibration demons with flexible couplings. World Pumps. 2005. No. 465. P. 44-47.
  • 5. Evdokimov, A.P. & Shikhnabieva, T.S. Stress-strain behavior and specific friction of toric rubbercord casings of flexible couplings. Journal of Machinery Manufacture and Reliability. 2017. Vol. 46. No. 2. P. 199-203.
  • 6. Ganesan, S. & Padmanabhan, C. Modelling of parametric excitation of a flexible coupling–rotor system due to misalignment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2011. Vol. 225. No. 12. P. 2907-2918.
  • 7. Ganesan, S. Rotor dynamic modeling of high-speed flexible coupling. Advances in vibration engineering. Vol. 10. No. 4. P. 317-324.
  • 8. Homišin, J. Contribution and perspectives of new flexible shaft coupling types-pneumatic couplings. Scientific Journal of Silesian University of Technology. Series Transport. 2018. Vol. 99. P. 65-77.
  • 9. Homisin, J. & Kassay, P. Influence of temperature on characteristics properties of flexible coupling. Transport Problems. 2012. Vol. 7. No. 4. P 123-129.
  • 10. Huang, Z. & Tan, J. & Liu, C. & Lu, X. Dynamic characteristics of a segmented supercritical driveline with flexible couplings and dry friction dampers. Symmetry. 2021. Vol. 13. No. 2. P. 281-312.
  • 11. Iqbal, S. & Al-Bender, F. & Ompusunggu, A.P. & Pluymers, B. & Desmet, W. Modeling and analysis of wet friction clutch engagement dynamics. Mech Syst Signal Process. 2015. No. 60. P. 420-436.
  • 12. Kołodziej, P. & Boryga, M. Frequency analysis of coupling with adjustable torsional flexibility. Maintenance and Reliability. 2014. Vol. 16. No. 2. P. 325-329.
  • 13. Kudra, G. & Awrejcewicz, J. & Szewc, M. Modeling and simulations of the clutch dynamics using approximations of the resulting friction forces. Appl Math Model. 2017. No. 46. P. 707-715.
  • 14. Lees, A.W. Misalignment in rigidly coupled rotors. J Sound Vib. 2007. No. 305. P. 261-271.
  • 15. Lei, B.L. & Li, C. & He, K. & Ma, Y.H. & Hong, J. Coupling vibration characteristics analysis and experiment of shared support-rotors system. J. Aerosp. Power. 2020. No. 35. P. 2293-2305.
  • 16. Li, M. & Khonsari, M. & Yang, R. Dynamics analysis of torsional vibration induced by clutch and gear set in automatic transmission. Int. J. Automot. Technol. 2018. Vol. 19. No. 3. P. 473-488.
  • 17. Li, W. & Chai, Z. & Wang, M. & Hu, X. Guo, Y. Online identification and verification of the elastic coupling torsional stiffness. Shock and Vibration. 2016. Article ID 2016432.
  • 18. Liu, H. & Wang, H. & Shi, Y. & Xia, X. & Liu, G. Multi-body dynamic modelling and simulation of the torsional vibration system of converters based on rigid-flexible coupling. Proceedings of the Institution of Mechanical Engineers. Part K: Journal of Multi-body Dynamics. 2016. Vol. 230. No. 3. P. 281-290.
  • 19. Liu, J.Y. & Lu, H. Rigid-flexible coupling dynamics of three-dimensional hub-beams system. Multibody Syst Dyn. 2007. No. 18. P. 487-510.
  • 20. Lonkwic, P. & Łygas, K. & Wolszczak, P. & Molski, S. & Litak, G. Braking deceleration variability of progressive safety gears using statistical and wavelet analyses. Measurement. 2017. No. 110 P. 90-97.
  • 21. Margielewicz, J. & Opasiak, T. & Gąska, D. & Litak, G. Study of flexible couplings nonlinear dynamics using bond graphs. Forsch Im Ingenieurwes. 2019.
  • 22. Mohammed, O. & Rantatalo, M. Dynamic response and time-frequency analysis for gear tooth crack detection. Mech Syst Signal Process. 2016. Vol. 66-67. P. 612-624.
  • 23. Nagesh, S. & Junaid Basha, A.M. & Singh, T.D. Dynamic performance analysis of high speed flexible coupling of gas turbine engine transmission system. J Mech Sci Technol. 2015. No. 29. P. 173-179.
  • 24. Nagesh, S. & Junaid Basha, A.M. & Thakur, D. An Investigation and 3D Crack Propagation Analysis of High Speed Flexible Coupling of Fighter Aircraft. J Fail. Anal. and Preven. 2015. No. 15. P. 662-671.
  • 25. Opasiak, T. Research on the basic parameters of flexible couplings. Advances in Science and Technology. 2012. No. 12. P. 122-130.
  • 26. Paskarbeit, J. & Annunziata, S. & Basa, D. & Schneider, A. A self-contained, elastic joint drive for robotics applications based on a sensorized elastomer coupling-design and identification. Sensors and Actuators A. Physical. 2013. Vol. 199. P. 56-66.
  • 27. Serkies, P. Comparison of the control methods of electrical drives with an elastic coupling allowing to limit the torsional torque amplitude. Maintenance and Reliability. 2017. No. 19. P. 203-210.
  • 28. Tadeo, A.T. & Cavalca, K.L. A comparison of flexible coupling models for updating in rotating machinery response. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2003. Vol. 25. No. 3. P. 235-246.
  • 29. Verucchi, C. & Bossio, J. & Bossio, G. & Acosta, G. Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA. Mechanical Systems and Signal Processing. 2016. Vol. 80. P. 570-581.
  • 30. Walker, P. & Zhu, B. & Zhang, N. Powertrain dynamics and control of a two speed dual clutch transmission for electric vehicles. Mech Syst Signal Process. 2017. No. 85. P. 1-15.
  • 31. Wenzel da Silva, F. & Tuckmantel, K. & Cavalca, L. Vibration signatures of a rotor-coupling-bearing system under angular misalignment. Mechanism and Machine Theory. 2019. Vol. 133. P. 559-583.
  • 32. Yang, H. & Yao, X.F. & Yan, H. & Yuan, Y. & Dong, YF. & Liu, YH. Anisotropic hyperviscoelastic behaviors of fabric reinforced rubber composites. Compos Struct. 2018. No. 187. P.116-121.
  • 33. Zarraga, O. & Ulacia, I. & Abete, J.M. & Ouyang, H. Receptance based structural modification in a simple brake-clutch model for squeal noise suppression. Mech Syst Signal Process. 2017. No. 90. P. 222-233.
  • 34. Zhao, F. & Xie, Y. & Zhang, M. Study on rigid-flexible coupling dynamics of hub-plate system. Front. Energy Power Eng. 2007. No. 1. P. 181-188.
  • 35. Zhao, Z. & He, L. & Yang, Y. & Wu, C. & Li, X. & Hedrick, J.K. Estimation of torque transmitted by clutch during shifting process for dry dual clutch transmission. Mech Syst Signal Process. 2016. No. 75. P. 413-433.
  • 36. Zheng, & T. Zhang, D. & Liao, L. & Wu, S. Rigid-fexible coupling dynamic analysis of aero-engine blades. Journal of Mechanical Engineering. 2014. Vol. 50. No. 23. P. 42-49.
  • 37. Zhou, B. & Zhang, J. & Gao, J. & Yu, H. & Liu, D. Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer. Mech Syst Signal Process. 2018. No. 106. P. 249-264.
  • 38. Zhou, J. & Jiang, L. & Khayat, R.E. A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. J Mech Phys Solids. 2018. Vol. 110. P. 137-154.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1014f6e-702d-4916-b9ea-3b3f8bb2453a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.