PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissimilar friction stir welding of AISI 430 ferritic and AISI 304L austenitic stainless steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dissimilar joints of AISI 430 ferritic and AISI 304L austenitic stainless steels were produced by friction stir welding process. A sound and defect-free joint was obtained at 1 mm tool offset towards the ferritic sample located in the advancing side, and at rotational and welding speeds of 560 rpm and 50 mm/min, respectively. The XRD measurements revealed the presence of approximately equal volume fractions of ferrite (51%) and austenite (49%) phases in the stir zone (SZ). The formation of low-angle grain boundaries through the occurrence of dynamic recovery along with the presence of shear texture components in both constituent phases of ferrite and austenite in the SZ approved the occurrence of continuous dynamic recrystallization throughout the evolved microstructure. Moreover, microstructural observations showed the formation of necklace structure through the microstructure of ferrite in the SZ. Taylor map approved the strain localization in the ferrite phase. Micro-hardness measurement indicated that the hardness value is increased in the SZ. The result of tensile test showed that fracture occurred from less ductile ferritic base metal.
Rocznik
Strony
498--513
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
  • Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
autor
  • Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
Bibliografia
  • [1] Mvola B, Kah P, Martikainen J. Dissimilar ferrous metal welding using advanced gas metal arc welding processes. Rev Adv Mater Sci. 2014;38:125–37.
  • [2] Casalino G, Angelastro A, Perulli P, Casavola C, Moramarco V. Study on the fiber laser/TIG weldability of AISI 304 and AISI 410 dissimilar weld. J Manuf Process. 2018;35:216–25.
  • [3] Sun Z. Feasibility of producing ferritic/austenitic dissimilar metal joints by high energy density laser beam process. Int J Press Vessel Pip. 1996;68:153–60.
  • [4] Arivarasu M, Ramkumar Kasinath D, Natarajan A. Effect of continuous and pulsed current on the metallurgical and mechanical properties of gas tungsten arc welded AISI 4340 aeronautical and AISI 304 L austenitic stainless steel dissimilar joints. Mater Res. 2015;18:59–77.
  • [5] Reddy G, Rao K, Sekhar T. Microstructure and pitting corrosion of similar and dissimilar stainless steel welds. Sci Technol Weld Join. 2008;13:363–77.
  • [6] Hsieh C-C, Lin D-Y, Chen M-C, Wu W. Precipitation and strengthening behavior of massive δ-ferrite in dissimilar stain-less steels during massive phase transformation. Mater Sci Eng A. 2008;477:328–33.
  • [7] Satyanarayana V, Reddy GM, Mohandas T. Dissimilar metal friction welding of austenitic–ferritic stainless steels. J Mater Process Technol. 2005;160:128–37.
  • [8] Hajideh MR, Farahani M, Alavi SAD, Ramezani NM. Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets. Manuf Process. 2017;26:269–79.
  • [9] Aguilar S, Tabares R, Serna C. Microstructural transformations of dissimilar austenite-ferrite stainless steels welded joints. J Mater Phys Chem. 2013;1:65–8.
  • [10] Ghosh N, Pal PK, Nandi G. GMAW dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stain-less steel by using AISI 308 filler wire. Int J Eng Sci Technol. 2017;20:1334–41.
  • [11] Kou S. Welding metallurgy. 2nd ed. Hoboken: Wiley; 2003.
  • [12] Rajaković-Ognjanović V, Grgur BN. Corrosion of an austenite and ferrite stainless steel weld. J Serb Chem Soc. 2011;76:1027–35.
  • [13] Caligulu U, Dikbaş H, Taskin M. Microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 austenitic stainless steels) by CO2 laser beam welding (LBW). Gazi Univ J Sci. 2012;25:35–51.
  • [14] Kumar S, Ansari AR. Experimental investigation on dissimilar welding of austenite and ferrite stainless steel by MIG welding process. Int J Adv Res Sci Eng Technol. 2017;6:1207–18.
  • [15] Thakare JG, Pandey C, Mahapatra MM, Mulik RS. An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel. J Manuf Process. 2019;48:249–59.
  • [16] Pandey C. Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes. Metall Mater Trans A. 2020;51:2126–42.
  • [17] Madhusudhan Reddy G, Mohandas T, Sambasiva Rao A, Satyanarayana V. Influence of welding processes on microstructure and mechanical properties of dissimilar austenitic-ferritic stainless steel welds. Mater Manuf Process. 2005;20:147–73.
  • [18] Kulkarni N, Mishra RS, Yuan W. Friction stir welding of dissimilar alloys and materials. 1st ed. Oxford: Butterworth-Heine-mann; 2015.
  • [19] Murr LE. Handbook of materials structures, properties, processing and performance. Cham: Springer International; 2015.
  • [20] Coelho R, Kostka A, Dos Santos J, Kaysser-Pyzalla A. Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A. 2012;556:175–83.
  • [21] Watanabe T, Takayama H, Yanagisawa A. Joining of aluminum alloy to steel by friction stir welding. J Mater Process Technol. 2006;178:342–9.
  • [22] Saeid T, Abdollah-Zadeh A, Assadi H, Ghaini FM. Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel. Mater Sci Eng A. 2008;496:262–8.
  • [23] Lombard H. Optimized fatigue and fracture performance of friction stir welded aluminium plate: a study of the inter-relationship between process parameters, TMAZ, microstructure, defect population and performance, Ph.D. Thesis, University of Plymouth, 2007. https ://pearl .plymo uth.ac.uk/handl e/10026.1/2389. Accessed 10 Sep 2020.
  • [24] ForgasJúnior A, Otubo J, Magnabosco RM. Microstructural evolution during industrial rolling of a duplex stainless steel. ISIJ Int. 2008;48:1596–602.
  • [25] Galvão I, Loureiro A, Verdera D, Gesto D. Rodrigues DM (2012) Influence of tool offsetting on the structure and morphology of dissimilar aluminum to copper friction-stir welds. Metall Mater Trans A. 2012;43:5096–105.
  • [26] Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd ed. Amsterdam: Elsevier; 2004.
  • [27] Patel V, Li W, Vairis A, Badheka V. Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State Mater Sci. 2019;44:378–426.
  • [28] Mishra RS, Ma Z. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50:1–78.
  • [29] Park SHC, Sato YS, Kokawa H, Okamoto K, Hirano S, Inagaki M. Boride formation induced by PCBN tool wear in friction-stirwelded stainless steels. Metall Mater Trans A. 2009;40:625–36.
  • [30] Jafarzadegan M, Abdollah-Zadeh A, Feng A, Saeid T, Shen J, Assadi H. Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel. J Mater Sci Technol. 2013;29:367–72.
  • [31] Lakshminarayanan A, Shanmugam K, Balasubramanian V. Microstructure, tensile and impact toughness properties of friction stir welded mild steel. J Iron Steel Res Int. 2010;17:68–74.
  • [32] Choi D, Lee C, Ahn B, Choi J, Yeon Y, Song K, et al. Frictional wear evaluation of WC–Co alloy tool in friction stir spot welding of low carbon steel plates. Int J Refract Met Hard. 2009;27:931–6.
  • [33] Emami S, Saeid T, Khosroshahi RA. Microstructural evolution of friction stir welded SAF 2205 duplex stainless steel. J Alloys Compd. 2018;739:678–89.
  • [34] Emami S, Saeid T. A comparative study on the microstructure development of friction stir welded 304 austenitic, 430 ferritic, and 2205 duplex stainless steels. Mater Chem Phys. 2019;237:121833.
  • [35] Kallend J, Huang Y. Orientation dependence of stored energy of cold work in 50% cold rolled copper. Metal Sci J. 1984;18:381–6.
  • [36] Di Schino A, Barteri M, Kenny J. Effects of grain size on the properties of a low nickel austenitic stainless steel. J Mater Sci. 2003;38:4725–33.
  • [37] Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:30–207.
  • [38] Musin F, Belyakov A, Kaibyshev R, Motohashi Y, Itoh G, Tsuzaki K. Microstructure evolution in a cast 1421Al alloy during hot equal-channel angular extrusion. Rev Adv Mater Sci. 2010;25:107–12.
  • [39] Suwas S, Ray RK. Crystallographic texture of materials. London: Springer; 2014.
  • [40] Cullity BD. Answers to problems: elements of X-ray diffraction, 2nd edn. Reading: Addison-Wesley Publishing Company, 1978.
  • [41] Moser NH, Gross TS, Korkolis YP. Martensite formation in conventional and isothermal tension of 304 austenitic stain-less steel measured by X-ray diffraction. Metall Mater Trans A. 2014;45:4891–6.
  • [42] Krawitz AD. Introduction to diffraction in materials science and engineering. New York: Wiley; 2001.
  • [43] Fultz B, Howe JM. Transmission electron microscopy and diffractometry of materials. 3rd ed. Berlin: Springer; 2008.
  • [44] Emami S, Saeid T. Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass. Acta Metall Sin (Engl Lett.). 2015;28:766–71.
  • [45] Wang S, Zhu Z, Starink M. Estimation of dislocation densities in cold rolled Al–Mg–Cu–Mn alloys by combination of yield strength data, EBSD and strength models. J Microsc. 2005;217:174–8.
  • [46] Patel V, Li W, Liu X, Wen Q, Su Y, Shen J, et al. Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate. Mater Sci Eng A. 2020;784:139322.
  • [47] Sato Y, Nelson T, Sterling C, Steel R, Pettersson C-O. Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel. Mater Sci Eng A. 2005;397:376–84.
  • [48] Tsuchida N, Masuda H, Harada Y, Fukaura K, Tomota Y, Nagai K. Effect of ferrite grain size on tensile deformation behavior of a ferrite-cementite low carbon steel. Mater Sci Eng A. 2008;488:446–52.
  • [49] Tsuji N, Ito Y, Saito Y, Minamino Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr Mater. 2002;47:893–9.
  • [50] Fan Z, Mingzhi H, Deke S. The relationship between the strain-hardening exponent n and the microstructure of metals. Mater Sci Eng A. 1989;122:211–3.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a10076e5-6144-415c-bde0-6d92f14699fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.