PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The efficiency of waste hot water utilisation to improve the temperature conditions for growing plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the rational ways of energy saving is to use the heat of wastewater from energy companies for open ground heating and cultivation crops. The most significant sources of heat are thermal and nuclear power plants that produce low-thermal waters of 28-35°C. Heating of the ground with the use of circulating warm water allows to increase temperature at all points of the soil profile. The maximum thermal effect from heating ground is observed at the depth of pipe heaters (7.3- 11.1°C). Ground heating allows to extend the growing season for crops by 3-4 weeks, which can expedite harvesting and thus maximise the harvest. In natural moisture conditions, ground heating does not lead to significant reduction of moisture reserves in the active layer throughout the growing period. There is a redistribution of moisture in a soil profile. It decreases in the zone of pipe heaters and redistributes toward the top. The formation of the nutrient regime changes, the content of mobile phosphorus and potassium, and nitrate nitrogen increases, whereas the content of ammonia nitrogen is reduced. Ground heating is a new special heat reclamation technique. It allows not only to control temperature of the agricultural crop environment, but also to dissipate heat in the ground, and promote the utilisation of waste heat and the stabilisation of the environment.
Wydawca
Rocznik
Tom
Strony
94--100
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • National University of Water and Environmental Engineering, Department of Water Engineering and Technologies, Rivne, Ukraine
  • National University of Water and Environmental Engineering, Department of Water Engineering and Technologies, Rivne, Ukraine
  • Institute of Water Problems and Land Reclamation NAAS, Department of Land Reclamation, 03022, 37 Vasylkivska Str., Kyiv, Ukraine
autor
  • National University of Water and Environmental Engineering, Department of Water Engineering and Technologies, Rivne, Ukraine
  • National University of Water and Environmental Engineering, Department of Water Engineering and Technologies, Rivne, Ukraine
  • National University of Water and Environmental Engineering, Department of Water Engineering and Technologies, Rivne, Ukraine
  • Institute of Water Problems and Land Reclamation NAAS, Department of Land Reclamation, 03022, 37 Vasylkivska Str., Kyiv, Ukraine
Bibliografia
  • BABICH V., DOVBENKO V., KUZMYCH L., DOVBENKO T. 2017. Estimation of flexures of the reinforced concrete elements according to the National Ukrainian & European standards. MATEC Web of Conferences. Vol. 116, 02005. DOI 10.1051/matecconf/201711602005.
  • BALGHOUTHIА М., KOOLIА S., FARHATА A., DAGHARIВ H. 2005. Experimental investigation of thermal and moisture behaviors of wet and dry soils with buried capillary heating system. Solar Energy. Vol. 79(6) p. 669–681. DOI 10.1016/j.solener.2005.06.011.
  • DALAMPAKIS P., GELEGENIS J., ILIAS A., LADAS A. 2017. Technical and economic assessment of geothermal soil heating systems in row covered protected crops: A case study from Greece. Applied Energy. Vol. 203(1). p. 201–218. DOI 10.1016/j.apenergy.2017.06.029.
  • DUDNIK A., KUZMYCH L., TRUSH O., DOMKIV T., LESHCHENKO O., VYSHNIVSKYI V. 2020. Smart home technology network construction method and device interaction organization concept. IEEE Second International Conference on System Analysis & Intelligent Computing (SAIC’2020). 5–9 Oct. 2020 Kyiv. DOI 10.1109/SAIC51296.2020.9239220.
  • ISSAKHOV A. 2014. Mathematical modeling of thermal process to aquatic environment with different hydro meteorological conditions. The Scientific World Journal. Vol. 2014, 678095. DOI 10.1155/2014/678095.
  • KOROBIICHUK I., DREVETSKY V., KUZMYCH L., KOVELA I. 2020. The method of multi-criteria parametric optimization. In: Automation 2020: Towards industry of the future. Eds. R. Szewczyk, C. Zieliński, M. Kaliczyńska. Advances in Intelligent Systems and Computing. Vol. 1140. Cham. Springer p. 87–97. DOI 10.1007/978-3-030-40971-5_9.
  • KOROBIICHUK I., KUZMYCH L., KVASNIKOV V. 2019. The system of the assessment of a residual resource of complex technical structures. Mechatronics 2019: Recent Advances Towards Industry 4.0. Eds. R. Szewczyk, J. Krejsa, M. Nowicki, A. Ostaszewska-Liżewska p. 350–357. Advances in Intelligent Systems and Computing. Vol. 1044. Cham. Springer. DOI 10.1007/978-3-030-29993-4_43.
  • KUMAR A GRAWAL K., YADAV T., MISRA R., DAS AGRAWAL G. 2019. Effect of soil moisture contents on thermal performance of earth-air-pipe heat exchanger for winter heating in arid climate: In situ measurement. Geothermics. Vol. 77 p. 12–23. DOI 10.1016/j.geothermics.2018.08.004.
  • KUZMYCH L., VOROPAY G., MOLESHCHA N., BABITSKA O. 2021. Improving water supply capacity of drainage systems at humid areas in the changing climate. Archives of Hydro-Engineering and Environmental Mechanics. Vol. 68. No. 1 p. 29–40. DOI 10.1515/heem-2021-0003.
  • LOVE R.V., WÜEST A., ZAPPA M., FINK G., BOUFFARD D. 2018. Tributaries affect the thermal response of lakes to climate change. Hydrology and Earth System Sciences. Vol. 22. No. 1 p. 132–141. DOI 10.5194/hess-22-31-2018.
  • MADDEN N., LEWIS A., DAVIS M. 2013. Thermal effluent from the power sector: An analysis of once-through cooling system impacts on surface water temperature. Environmental Research Letters. Vol. 8 p. 2–8. DOI 10.1088/1748-9326/8/3/035006.
  • PRATS J., VAL R., DOLZ J., ARMENGOL J. 2012. Water temperature modeling in the Lower Ebro River (Spain): Heat fluxes, equilibrium temperature, and magnitude of alteration caused by reservoirs and thermal effluent. Water Recourses. Vol. 48. No. 5 p. 230–245. DOI 10.1029/2011WR010379.
  • RAKOVEC J., HOČEVAR A. 1988. Simulation of soil- and air-microclimate modifications using soil heating with warm water. Agricultural and Forest Meteorology. Vol. 42(1) p. 41–52. DOI 10.1016/0168-1923(88)90065-2.
  • ROKOCHINSKIY A., JEZNACH J., VOLK P., TURCHENIUK V., FROLENKOVA N., KOPTIUK R. 2019a. Reclamation projects development improvement technology considering optimization of drained lands water regulation based on BIM. Scientific Review Engineering and Environmental Sciences. Vol. 28. Iss. 3(85) p. 432–443. DOI 10.22630/PNIKS.2019.28.3.40.
  • ROKOCHYNSKIY A., VOLK P., FROLENKOVA N., PRYKHODKO N., GERASIMOV I., PINCHUK O. 2019b. Evaluation of climate changes and their accounting for developing the reclamation measures in Western Ukraine. Scientific Review Engineering and Environmental Sciences. Vol. 28. Iss. 1(83) p. 3–13. DOI 10.22630/PNIKS.2019.28.1.1.
  • ROKOCHINSKIY A., KOROBIICHUK I., KUZMYCH L., VOLK P., KUZMYCH A. 2020. The system optimization of technical, technological and construction parameters of polder systems. In: Automation 2020: Towards Industry of the Future Advances in Intelligent Systems and Computing. Vol. 1140. Eds. R. Szewczyk, C. Zieliński, M. Kaliczyńska. Cham. Springer p. 78–86. DOI 10.1007/978-3-030-40971-5.
  • VASILIEV A.M. 2011. Razvitiye teplichnykh khozyaystv pri uslovii ispol’zovaniya potentsiala energovyrabatyvayushchikh predpriyatiy [Development of hothouse economy under condition of use of potential power enterprises]. Nauchnyy Zhurnal Rossiyskogo NII Problem Melioratsii. No. 2 p. 1–7.
  • VASILIEV N.N., REMIZOV Y U.V. 2004. Energobiologicheskiye kompleksy kak sposob utilizatsii sbrosnogo tepla krupnykh energoob”yektov i sozdaniya vysokointensivnogo obezotkhodnogo proizvodstva [Energobiological complexes as a method of utilization of waste heat of large power facilities and the creation high-intensity waste-free production]. Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez. Vyp. 1 p. 57–60.
  • VOSTRIKOV V.P. 2015. Heat reclamation system for heating the soil with waste warm waters. Mezhdunarodnyy Nauchnyy Institut “Educatio”. No. 6 (13) p. 131–134.
  • VOSTRIKOV V.P., PINCHUK O.L., GNATYUK V.N. 2014. Soil water regime in the tunnel shelters at heating water filled shells-sleeves and drip irrigation. Universal Journal of Food and Nutrition Science. Vol. 2(1) p. 7–17. DOI 10.13189/ujfns.2014.020102.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0ff7fcf-6457-4c2e-b523-800853854fa0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.