Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Geometrically complex objects are more and more often produced with the help of the so-called additive manufacturing commonly referred to as 3D printing. This technology proves itself to be effective in the field of medical industry due to processing potential of titanium alloys. Nonetheless 3D printing also has its drawbacks, the most severe being high roughness of printed elements’ area as well as the need to remove support structures created following the printing. Mechanical processing is commonly used for said parameters being enhanced. The completion of that process, however, takes a lot of time and prevents hard-to-reach elements from being reached. The task of this article is to provide a new method of firming the print’s surface and removing load-bearing structures. To achieve this, selective laser melting (SLM) technology will be used along with bathing prints in HF/HNO3 solution, all of which are supported by ultrasound.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
280--290
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
- Amazemet Sp. z o. o., Ltd., Al. Jana Pawła II 27, 00-867 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
- Amazemet Sp. z o. o., Ltd., Al. Jana Pawła II 27, 00-867 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Bydgoszcz University of Technology, Bydgoszcz, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
Bibliografia
- 1. Walczak M. Surface characteristics and wear resistance of 316L stainless steel after different shot peening parameters. Adv Sci Technol J 2023; 17: 124–32. https://doi.org/10.12913/22998624/165800 WE - Emerging Sources Citation Index (ESCI).
- 2. Karolczuk A., Kurek M., Łagoda T. Fatigue life of aluminium alloy 6082 T6 under constant and variable amplitude bending with torsion. J Theor Appl Mech 2015; 53: 421–30. https://doi.org/10.15632/jtam-pl.53.2.421.
- 3. Nagalingam A.P., Gopasetty S.K., Wang J., Yuvaraj H.K., Gopinath A., Yeo S.H. Comparative fatigue analysis of wrought and laser powder bed fused Ti-6Al-4V for aerospace repairs: Academic and industrial insights. Int J Fatigue 2023; 176. https://doi.org/10.1016/J.IJFATIGUE.2023.107879.
- 4. Jin J.W., Kang K.W., Lee S. Fatigue analysis for automotive wheel bearing flanges. Int J Precis Eng Manuf 2023; 24: 621–8. https://doi.org/10.1007/S12541-023-00773-Z.
- 5. Mikušová N., Badiarová S., Jeřábek K. Optimization of welding pliers production for the automotive industry–case study. Adv Sci Technol Res J 2020; 14: 240–9. https://doi.org/10.12913/22998624/128105.
- 6. Skoczylas J., Kłonica M., Samborski S. A study on the FRP composite’s matrix damage resistance by means of elastic wave propagation analysis. Compos Struct 2022; 297: 115935. https://doi.org/10.1016/J.COMPSTRUCT.2022.115935.
- 7. Lyczkowska E., Szymczyk P., Dybała B., Chlebus E. Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Arch Civ Mech Eng 2014; 14: 586–94. https://doi.org/10.1016/J.ACME.2014.03.001.
- 8. Kulesa A., Kurek A., Łagoda T., Achtelik H., Kluger K. Low cycle fatigue of steel in strain controled cyclic bending. Acta Mech Autom 2016; 10: 62–5. https://doi.org/10.1515/ama-2016-0011.
- 9. Achtelik H., Kurek M., Kurek A., Kluger K., Pawliczek R., Lagoda T. Non-standard fatigue stands for material testing under bending and torsion loadings. AIP Conf. Proc., AIP Publishing; 2018, 2029, 20001. https://doi.org/10.1063/1.5066463.
- 10. Kurek M. Including the normal to shear stresses ratio in fatigue life estimation for cyclic loadings. MATEC Web Conf 2019; 300: 15005. https://doi.org/10.1051/matecconf/201930015005.
- 11. Kowalski S. Failure analysis of the elements of a forced-in joint operating in rotational bending conditions. Eng Fail Anal 2020; 118. https://doi.org/10.1016/J.ENGFAILANAL.2020.104864.
- 12. Kowalski S., Pexa M., Aleš Z., Čedík J. Failure analysis and the evaluation of forced-in joint reliability for selected operation conditions. Coatings 2021; 11. https://doi.org/10.3390/COATINGS11111305.
- 13. Wei X., Alahmer A., Ali H., Tahat S., Vyas P.P., Hamasha S. Effect of temperature on the low cycle fatigue properties of BGA solder joints. Microelectron Reliab 2023; 146. https://doi.org/10.1016/J.MICROREL.2023.115031.
- 14. Atzeni E., Genna S., Salmi A., Trovalusci F., Rubino G. Abrasive fluidized bed finishing of additive manufactured cobalt-chrome parts: effects on surface morphology and fatigue behavior. Int J Adv Manuf Technol 2023; 124: 1939–49. https://doi.org/10.1007/S00170-022-10580-X.
- 15. Kurek A., Łagoda T., Kurek M. Stress gradient as a size effect in fatigue life determination for alternating bending. Int J Fatigue 2021; 153: 106461. https://doi.org/10.1016/J.IJFATIGUE.2021.106461.
- 16. Kowalski S. Influence of diamond-like carbon coatings on the wear of the press joint components. Wear 2021; 486–487: 204076. https://doi.org/10.1016/J.WEAR.2021.204076.
- 17. Kubit A., Macek W., Zielecki W., Szawara P., Kłonica M. Fracture surface topography parameters for S235JR steel adhesive joints after fatigue shear testing. Adv Sci Technol Res J 2023; 17: 130–9. https://doi.org/10.12913/22998624/171490.
- 18. Mieloszyk J., Tarnowski A., Kowalik M., Perz R., Rzadkowski W. Preliminary design of 3D printed fittings for UAV. Aircr Eng Aerosp Technol 2019; 91: 756–60. https://doi.org/10.1108/AEAT-07-2018-0182/FULL/XML.
- 19. Moj K., Robak G., Owsiński R., Kurek A., Żak K., Przysiężniuk D. A new approach for designing cellular structures: design process, manufacturing and structure analysis using a volumetric scanner. J Mech Sci Technol 2022. https://doi.org/10.1007/S12206-022-2107-1.
- 20. Kurek A., Kurek M., Łagoda T. Stress-life curve for high and low cycle fatigue. J Theor Appl Mech 2019; 57. https://doi.org/10.15632/jtam-pl/110126.
- 21. Basquin O.H. The exponential law of endurance tests 1910; 10: 625–30.
- 22. Wöhler A.Z. Bauwwesen 1858; 8: 642–52.
- 23. Manson S.S. Fatigue: A complex subject—Some simple approximations 1964: 193–226.
- 24. Kurek A., Kurek M., Łagoda T. Strain-life fatigue curves on the basis of shear strains from torsion. Lect Notes Mech Eng 2019: 395–402. https://doi.org/10.1007/978-3-030-04975-1_46
- 25. Coffin L.F.J. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal. Trans ASME 1954; 76: 931–50.
- 26. Smith K.N., Watson P., A TTH. A stress-strain function for the fatigue of metals. J Mater 1970; 5: 767–78.
- 27. ASTM Standard F3001. Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion. ASTM B. Stand., 2014.
- 28. Truscello S., Kerckhofs G., Van Bael S., Pyka G., Schrooten J., Van Oosterwyck H. Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomater 2012; 8: 1648–58.
- 29. Sutter E.M.M., Goetz-Grandmont G.J. The behaviour of titanium in nitric-hydrofluoric acid solutions. Corros Sci 1990; 30: 461–76. https://doi.org/10.1016/0010-938X(90)90051-6.
- 30. Bagehorn S., Wehr J., Maier H.J. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatigue 2017; 102: 135–42. https://doi.org/10.1016/J.IJFATIGUE.2017.05.008.
- 31. Wysocki B., Idaszek J., Buhagiar J., Szlązak K., Brynk T., Kurzydłowski K.J., Święszkowski W. The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response. Mater Sci Eng C 2019; 95: 428–39. https://doi.org/10.1016/J.MSEC.2018.04.019.
- 32. Okuniewski W., Walczak M., Szala M. Effects of shot peening and electropolishing treatment on the properties of additively and conventionally manufactured Ti6Al4V alloy: a review. Materials 2024; 17(4): 1–29. https://doi.org/10.3390/ma17040934.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0fd38e0-9d7a-4bea-80e0-bb94256d618d