PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of Low Power Thinned Smart Antenna for 6G Sky Connection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve radio access capability, sky connectionsrelying on satellites or unmanned aerial vehicles (UAV), as wellas high-altitude platforms (HAP) will be exploited in6G wirelesscommunication systems, complementing terrestrial networks.For long-distance communication, a large smart antenna will beused that is characterized by high amounts of power consumedby digital beamformers. This paper focuses on reducing powerconsumption by relying on a thinned smart antenna (TSA). Theperformance of TSA is investigated in the sub-6GHz band. Thedifferential evolution (DE) algorithm is used to optimize excita-tion weights of the individual dipoles in the antenna array andthese excitation weights are then used in TSA for beamforming,with signal processing algorithms deployed. The DE techniqueis used with the least mean square, recursive least square andsample matrix inversion algorithms. The proposed method of-fers almost the same directivity, simultaneously ensuring lowerside lobes (SLL) and reduced power consumption. For a TSAof20,31, and64dipoles, the power savings are20%,19.4%,and17.2%, respectively. SLL reductions achieved, in turn, varyfrom 5.2 dB to 8.1 dB.
Rocznik
Tom
Strony
26--33
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • School of Electronics Engineering KIIT University, Bhubaneswar, Odisha, India
  • School of Electronics Engineering KIIT University, Bhubaneswar, Odisha, India
Bibliografia
  • [1] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, "A Survey on Green 6G Network: Architecture and Technologies", IEEE Access, vol. 7, pp. 175758-175768, 2019.
  • [2] F.A. Dicandia, N.J.G. Fonseca, M. Bacco, S. Mugnaini, and S. Genovesi, "Space-air-ground Integrated Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios", Sensors, vol. 22, no. 9, art. no. 3136, 2022.
  • [3] Y. Zeng, Q. Wu, and R. Zhang, "Accessing from the Sky: A Tutorial on UAV Communications for 5G and Beyond", Proceedings of IEEE, vol. 107, no. 12, pp. 2327-2375, 2019.
  • [4] R. Shrestha, R. Bajracharya, and S. Kim, "6G Enabled Unmanned Aerial Vehicle Traffic Management: A Perspective", IEEE Access, vol. 9, pp. 91119-91136, 2019.
  • [5] R. Dilli, "Design and Feasibility Verification of 6G Wireless Communication Systems with State of the Art Technologies", International Journal of Wireless Information Networks, vol. 29, pp. 93-117, 2022.
  • [6] Y.J. Guo and R.W. Ziolkowski, Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications, Hoboken: Wiley, 316 p., 2021.
  • [7] R.L. Haupt, "Thinned Arrays Using Genetic Algorithms", IEEE Transactions on Antennas and Propagation, vol. 42, no. 7, pp. 993-999, 1994.
  • [8] R.L. Haupt, "Adaptively Thinned Arrays", IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1626-1633, 2015.
  • [9] J.S. Petko and D.H. Werner, "Pareto Optimization of Thinned Planar Arrays with Elliptical Main Beams and Low Sidelobe Levels", IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1748-1751, 2011.
  • [10] M. Salucci, G. Gottardi, N. Anselmi, and G. Oliveri, "Planar Thinned Array Design by Hybrid Analytical-stochastic Optimization", IET Microwaves, Antennas and Propagation, vol. 11, no. 3, pp. 1841-1845, 2017.
  • [11] G. Buonanno, S. Costanzo, and R. Solimene, "Statistically Thinned Array Antennas for Simultaneous Multibeam Applications", IEEE Access, vol. 10, pp. 60230-60240, 2022.
  • [12] R. Bera and J.S. Roy, "Thinning of Elliptical and Concentric Elliptical Antenna Arrays Using Particle Swarm Optimization", Microwave Review, vol. 19, no. 1, pp. 2-7, 2013 (https://www.mtt-serbia.org.rs/files/MWR/MWR2013sep/Vol19No1_02_RBera.pdf).
  • [13] P. Nandi and J.S. Roy, "Optimization of Sidelobe Level of Thinned Phased Array Antenna Using Genetic Algorithm and Particle Swarm Optimization", in: IEEE International WIE Conference in Electrical and Computer Engineering (IEEE-WIECONECE), Dhaka, Bangladesh, 2015.
  • [14] A.S. Karasev and M.A. Stepanov, "Genetic Algorithm for Antenna Array Thinning with Minimization of Side Lobe Level", in: IEEE 15th International Conference of Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, Russian Federation, pp. 268-272, 2022.
  • [15] C.-B. Moon, J.-W. Jeong, K.-H. Nam, Z. Xu, and J.-S. Park, "Design and Analysis of a Thinned Phased Array Antenna for 5G Wireless Applications", International Journal of Antennas and Propagation, vol. 2021, art. no. 3039183, 2021.
  • [16] O. Quevedo-Teruel and E. Rajo-Iglesias, "Ant Colony Optimization in Thinned Array Synthesis with Minimum Side Lobe Level", IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 349-352, 2006.
  • [17] A. Razavi and K. Forooraghi, "Thinned Arrays Using Pattern Search Algorithms", Progress in Electromagnetics Research, vol. 78, pp. 61-71, 2008.
  • [18] D. Pinchera, M.D. Migliore, and G. Panariello, "Synthesis of Large Sparse Arrays Using IDEA (Inflating-Deflating Exploration Algorithm)", IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4658-4668, 2018.
  • [19] R.-Q. Wang and Y.-C. Jiao, "Synthesis of Sparse Linear Arrays with Reduced Excitation Control Numbers Using a Hybrid Cuckoo Search Algorithm with Convex Programming", IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 3, pp. 428-432, 2020.
  • [20] L.C. Godara, "Application of Antenna Arrays to Mobile Communications, Part II: Beam-forming and Direction-of-arrival Considerations", Proceedings of the IEEE, vol. 85, no. 8, pp. 1195-1245, 1997.
  • [21] C.A Balanis, J. Foutz, A.S. Spanias, and S. Bellofiore, "Smart Antenna System for Mobile Communication Network", IEEE Antenna and Propagation Magazine, vol. 44, no. 4, pp. 106-114, 2002.
  • [22] T.K. Sarkar, M.C. Wicks, M. Salazar-Palma, and R.J. Bonneau, Smart Antenna, Hoboken: Wiley, 472 p., 2003.
  • [23] S.S. Moghaddam and M.S. Moghaddam, "Speed-sensitive Weighting Algorithm for Digital Beamforming of Adaptive Antenna Arrays", Wireless Engineering and Technology, vol. 2, no. 3, pp. 165-174, 2011.
  • [24] M. Chryssomallis, "Smart Antennas", IEEE Antennas and Propagation Magazine, vol. 42, no. 3, pp. 129-136, 2000.
  • [25] F.B. Gross, Smart Antennas for Wireless Communications with MATLAB, Maidenhead: McGraw Hill, 270 p., 2005 (ISBN: 9780071447898).
  • [26] M. Abualhayja’a and M. Houssain, "Comparative Study of Adaptive Beamforming Algorithms for Smart Antenna Applications", in: International Conference on Communications, Signal Processing, and their Applications (ICCSPA), Sharjah, UAE, 2021.
  • [27] M. Atzemourt, A. Farchi, Y. Chihab, and Z. Hachkar, "Performance Evaluation of LMS and CM Algorithms for Beamforming", Advances in Materials Science and Engineering, vol. 2022, art. no. 7744625, 2022.
  • [28] M. Mishra and J. S. Roy, "Investigations on the Effect of Mutual Coupling in Smart Antenna Using Adaptive Signal Processing Algorithm", in: IEEE International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC), Bhubaneswar, India, 2018.
  • [29] B. Samantaray, K.K. Das, and J.S. Roy, "Performance of Smart Antenna in Cellular Network Using Variable Step Size Algorithms", International Journal of Microwave and Optical Technology (IJMOT), vol. 15, no. 2, pp. 179-186, 2020.
  • [30] K. Pirapaharan, N. Ajithkumar, K. Sarujan, X. Fernando, and P.R.P. Hoole, "Smart, Fast, and Low Memory Beam-steering Antenna Configurations for 5G and Future Wireless Systems", Electronics, vol. 11, no. 17, art. no. 2658, 2022.
  • [31] B.C. Banister and J.R. Zeidler, "Tracking Performance of the RLS Algorithm Applied to an Antenna Array in a Realistic Fading Environment", IEEE Transactions on Signal Processing, vol. 50, no. 5, pp. 1037-1050, 2002.
  • [32] P. Saxena and A. Kothari, "Performance Analysis of Adaptive Beamforming Algorithms for Smart Antennas", IERI Procedia, vol. 10, pp. 131-137, 2014.
  • [33] K. Ghatak, A. Senapati, and J.S. Roy, "Investigations on Adaptive Beam Forming for Linear and Planar Smart Antenna Arrays Using Sample Matrix Inversion Algorithm", International Journal of Computer Applications, vol. 117, no. 8, pp. 47-50, 2015.
  • [34] J. Gao, J. Zhen, Y. Lv, and B. Guo, "Beamforming Technique Based on Adaptive Diagonal Loading in Wireless Access Networks", Ad hoc Networks, vol. 107, art. no. 102249, 2020.
  • [35] A. Pezeshki, V.B.D.V. Veen, L.L. Scharf, H. Cox, and M. Lundberg, "Eigenvalue Beamforming Using a Multi-rank MVDR Beamformer and Subspace Selection", IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1954-1967, 2008.
  • [36] S.S. Balasem, S.K. Tiong, and S.P. Koh, "Beamforming algorithms technique by using MVDR and LCMV", World Applied Programming, vol. 2, no. 5, pp. 315-324, 2012.
  • [37] Veerendra, Md. Bakhar, and R.M. Vani, "Robust Blind Beam Formers for Smart Antenna System Using Window Techniques", Procedia Computer Science, vol. 93, pp. 713-720, 2016.
  • [38] S. Choi and T.K. Sarkar, "Adaptive Antenna Array Utilizing the Conjugate Gradient Method for Multipath Mobile Communication", Signal Processing, vol. 29, no. 3, pp. 319-333, 1992.
  • [39] B. Samantaray, K.K. Das, and J.S. Roy "Designing Smart Antenna Using Machine Learning Algorithms", Journal of Telecommunications and Information Technology, no. 4, pp. 46-52, 2023.
  • [40] F. Qi, W. Li, P. Wu, L. Feng, and F. Zhou, "Deep Learning-based BackCom Multiple Beamforming for 6G UAV IoT Networks", EURASIP Journal on Wireless Communications and Networking, art. no. 50, 2021.
  • [41] S.B.R. Tirmizi, Y. Chen, S. Lakshminarayana, W. Feng, and A.A. Khuwaja, "Hybrid Satellite-terrestrial Networks Toward 6G, Key Technologies and Open Issues", Sensors, vol. 22, no. 1, art. no. 8544, 2022.
  • [42] R. Storn and K. Price, "Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces", Journal of Global Optimization, vol. 11, pp. 341-359, 1997.
  • [43] A. Deb, J.S. Roy, and B. Gupta, "Performance Comparison of Differential Evolution, Particle Swarm Optimization and Genetic Algorithm in the Design of Circularly Polarized Microstrip Antennas", IEEE Transactions on Antennas and Propagation, vol. 62, no. 8, pp. 3920-3928, 2014.
  • [44] A. Deb, J. S. Roy, and B. Gupta, "A Differential Evolution Performance Comparison", IEEE Antennas and Propagations Magazine, vol. 60, no. 1, pp. 51-61, 2018.
  • [45] B. Widrow and S.D. Stearns, Adaptive Signal Processing, Hoboken: Prentice Hall, 496 p., 1985 (ISBN: 9788131705322).
  • [46] S. Haykin, Adaptive Filter Theory, 4th ed., Hoboken: Prentice Hall, 2002 (ISBN: 9780130901262).
  • [47] C.A. Balanis, Antenna Theory - Analysis and Design, 3rd ed., Hoboken: Wiley, 2005 (ISBN: 9780471667827).
  • [48] B. Rupakula, A.H. Aljuhani, and G.M. Rebeiz, "ACPR Improvement in Large Phased Arrays With Complex Modulated Waveforms", IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 3, pp. 1045-1053, 2020.
  • [49] F.A. Dicandia and S. Genovesi, "Wide-Scan and Energy-Saving Phased Arrays by Exploiting Penrose Tiling Subarrays", IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 7524-7537, 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0fb5f29-c53e-405f-964a-b67a45eda85b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.