PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Computational Model For Chromatographic Relative Retention Time of Polychlorinated Biphenyls Using Sub-structural Molecular Fragments

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantitative structure-retention relationship (QSRR) analysis is a useful technique capable of relating chromatographic retention time to the chemical structure of a solute. Using the sub-structural molecular fragments (SMF) derived directly from the molecular structures, the gas chromatographic relative retention times (RRTs) of 209 polychlorinated biphenyls (PCBs) on the SE-54 stationary phase were calculated. An eight-variable regression equation with the correlation coefficient of 0.9945 and the root mean square errors of 0.0134 was developed. Forward and backward stepwise regression variable selection and multi-linear regression analysis (MLRA) are combined to describe the effect of molecular structure on the RRT of PCB according to the QSRR method. To quantitatively relate RRT with the molecular structure MLR analysis is performed on the set of 163 sub-structural molecular fragments (SMF) provided by the ISIDA software. The eight fragments selected by variable subset selection, all belonging to the sub-fragments, adequately represent the structural factors influencing the affinity of PCB to SE-54 stationary phase in the separation process. Finally, a QSRR model is selected based on leave-one-out cross-validation and its prediction ability is further tested on 42 representative compounds excluded from model calibration. The prediction results from the MLR model are in good agreement with the experimental values. By applying the MLR method we can predict the test set with squared cross validated correlation coefficient (Q2 ext) of 0.9913 and root mean square error (RMSE) of 0.0169.
Twórcy
autor
  • Department of Chemistry, Faculty of Science Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
Bibliografia
  • [1] C.J. Halsall, R.G.M. Lee, P.J. Coleman, et al., PCBs in UK urban air, Environ. Sci. Technol., 29, 2368-2376 (1995).
  • [2] R.F. Herrick, D.J. Lefkowitz and G.A. Weymouth, Soil contamination from PCB containing buildings, Environ. Health Persp., 115, 173-175 (2007).
  • [3] S. Bayen, E. Koroleva, H.K. Lee, et al., Persistent organic pollutants and heavy metals in typical sea foods consumed in Singapore, J. Toxicol. Environ. Health, Part A 68, 151-166 (2005).
  • [4] M.P. Simmonds, K. Haraguchi, T. Endo, et al., Human health significance of organochlorine and mercury contaminants in Japanese whale meat, J. Toxicol. Environ. Health, Part A, 65, 1211-1235(2002).
  • [5] D.G. Wang, M. Yang, H.L. Jia, et al., Levels, distributions and profiles of polychlorinated biphenyls in surface soils of Dalian, China, Chemosphere, 73, 38-42 (2008).
  • [6] S. Ohta, H. Tokusawa, T. Nakao, et al., Global contamination of coplanar polybrominated/chlorinated biphenyls (Co-PXBs) in the market fishes from Japan, Chemosphere, 73, 31-38 (2008).
  • [7] J. She, A. Holden, T.L. Adelsbach, et al., Concentrations and time trends of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in aquatic bird eggs from San Francisco Bay, CA 2000-2003, Chemosphere, 73, 201-209 (2008).
  • [8] A.S. Souza, J.P.M. Torres, R.O. Meire, et al., Organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in sediments and crabs (Chasmagnathus granulata, Dana, 1851) from mangroves of Guanabara bay, Rio de Janeiro state, Brazil, Chemosphere, 73, 186-192 (2008).
  • [9] C. Mori, H. Fukata, K. Sakurai, et al., Strong correlation between the concentration of dioxins and total PCBs in current Japanese people, Chemosphere, 73, 235-238 (2008).
  • [10] Y. Masuda, A. Schecter, and O. Papke, Concentrations of PCBs, PCDFs and PCDDs in the blood of Yusho patients and their toxic equivalent contribution, Chemosphere, 37, 1773-1780 (1998).
  • [11] S.L. Schantz, Developmental neurotoxicity of PCBs in humans: what do we know and where do we go from here?, Neurotoxicol Teratol 18, 217-227 (1996).
  • [12] M.D. Erickson, Analytical chemistry of PCBs, 2nd edn. CRC Press LLC, Boca Raton, FL, USA 1997.
  • [13] E.A. Castro, A. A. Toropov, A.I. Nesterova ,et al., QSPR modeling aqueous solubility of polychlorinated biphenyls by optimization of correlation weights of local and global graph invariants, Central European Journal of Chemistry, 2(3), 500-523 (2004).
  • [14] B. Wei, S. Xie, M. Yu, et al., QSPR-based prediction of gas/particle partitioning of polychlorinated biphenyls in the atmosphere, Chemosphere, 66(10), 1807-1820 (2007).
  • [15] J. F. Niu, Z. F. Yang, Z. Y. Shen, et al., QSPRs for the prediction of photodegradation half-life of PCBs in n-hexane, SAR QSAR Environ. Res., 17(2), 173-182 (2006).
  • [16] J. Padmanabhan, R. Parthasarathi, V. Subramanian, et al., QSPR models for polychlorinated biphenyls: n- Octanol/water partition coefficient, Bioorg. Med. Chem. Lett., 14(4), 1021-1028 (2006).
  • [17] L. Jantschi, S. Bolboac˘a, Molecular Descriptors Family on Structure Activity Relationships 6. Octanol-Water Partition Coefficient of Polychlorinated Biphenyls, Leonardo El. J. Pract. Technol. 8, 71-86 (2006).
  • [18] S. Puri, J. S. Chickos and W.J. Welsh, Three-dimensional quantitative structure – Property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): Enthalpy of vaporization, J. Chem. Inf. Comp. Sci. 42(2), 299-304 (2002).
  • [19] J. Padmanabhan, R. Parthasarathi, V. Subramanian, et al., Using QSPR models to predict the enthalpy of vaporization of 209 polychlorinated biphenyl congeners, QSAR Comb. Sci. 26(2), 227-237 (2007).
  • [20] S. Puri, J.S. Chickos and W.J. Welsh, Three-dimensional quantitative structure – Property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): Enthalpy of sublimation, J. Chem. Inf. Comp. Sci. 42(1), 109-116 (2002).
  • [21] J. Devillers and Z. Fresenius, A simple method for the prediction of the GLC retention times of all the 209 PCB congeners. Anal. Chem. 332 (1), 61-62 (1988).
  • [22] M.N. Hasan and P.C. Jurs, Computer-assisted prediction of gas chromatographic retention times of polychlorinated biphenyls, Anal. Chem., 60(10), 978-982 (1988).
  • [23] S. Liu, Y. Liu, D. Yin, et al., Prediction of chromatographic relative retention time of polychlorinated biphenyls from the molecular electronegativity distance vector, J. Sep. Sci. 29(2), 296-301(2006).
  • [24] Y. Ren, H. Liu, X. Yao, et al., An accurate QSRR model for the prediction of the GCxGCTOFMS retention time of polychlorinated biphenyl (PCB) congeners, Anal. Bioanal. Chem. 388 (1), 165-172 (2007).
  • [25] S. Bowadt, H. Skejoandresen, L. Montanarella, et al., Hrgc separations of 160 chlorobiphenyls in technical mixtures on 4 polar narrow-bore columns, Int. J. Environ. Anal. Chem. 56(2), 87-107(1994).
  • [26] V. Gajduskova and R. Uldrich, Analysis of specific polychlorinated biphenyl congeners for the examination of rawmaterials and foodstuffs of animal origin, Vet. Med. 37, 471-478 (1992).
  • [27] M. Bolgar, J. Cunningham, R. Cooper, et al.„ Physical, spectral and chromatographic properties of all 209 individual PCB congeners, Chemosphere 31, 2687-2705 (1995).
  • [28] G. Castello and G. Testini, Determination of retention indices of polychlorobiphenyls by using other compounds detectable by electron-capture detection or selected polychlorobiphenyls as the reference series, J. Chromatogr. A 741, 241-249 (1996).
  • [29] M. D. Mullin, C.M. Pochini, S. McCrindle, et al., Highresolution PCB analysis: synthesis and chromatographic properties of all 209 PCB congeners, Environ. Sci. Technol., 18,468-476 (1994).
  • [30] A. Robbat Jr., G. Xyrafas and D. Marshall,Prediction of gas chromatographic retention characteristic of polychlorinated biphenyls, Anal. Chem. 60, 982-985 (1988).
  • [31] H. A. J. Govers and P. de Voogt, Gas chromatographic derivation of the solubility parameters of polychbrinated biphenyls with the inclusion of cis-trans and optical isomerism and orientational disorder, SAR QSAR Environ. Res. 3, 315-324 (1995).
  • [32] J. Ghasemi and S. Saaidpour, QSPR prediction of aqueous solubility of drug-like organic compounds, Chem. Pharm. Bull. 55, 669-674 (2007).
  • [33] J. Ghasemi, S. Saaidpour and S.D. Brown, QSPR study for estimation of acidity constants of some aromatic acids derivatives using multiple linear regression (MLR) analysis, J. Mol. Struct. (Theochem.) 805, 27-32 (2007).
  • [34] J. Ghasemi and S. Saaidpour, Quantitative structure-property relationship study of n-octanol- water partition coefficients of some of diverse drugs using multiple linear regression, Anal. Chim. Acta 604, 99-106 (2007).
  • [35] J. Ghasemi and S. Saaidpour, QSRR prediction of the chromatographicretention behavior of painkiller drugs, J. Chromatogr.Sci. 47, 156-163 (2009).
  • [36] J. Ghasemi and S. Saaidpour, Artificial neural network-based quantitative structural property relationship for predicting boiling points of refrigerants, QSAR Comb. Sci., 28, 1245-1254 (2009).
  • [37] S. Saaidpour, Prediction of drug lipophilicity using back propagation artificial neural network modeling, Orient. J. Chem. 30(2), 793-802(2014).
  • [38] S. Saaidpour, A. Bahmani and A. Rostami, Prediction the normal boiling points of primary, secondary and tertiary liquidamines from their molecular structure descriptors, CMST 21(4) 201-210 (2015).
  • [39] S. Khaledian and S. Saaidpour, Quantitative structureproperty relationship modelling of distribution coefficients (logd7.4) of diverse drug by sub-structural molecular fragments method, Orient. J. Chem. 31(4), 1969-1976(2015).
  • [40] S. Saaidpour, Quantitative modeling for prediction of critical temperature of refrigerant compounds, Phys. Chem. Res. 4(1), 61-71(2016).
  • [41] S. Saaidpour, S. A. Zarei and F. Nasri, QSPR study of molar diamagnetic susceptibility of diverse organic compounds using multiple linear regression analysis, Pak. J. Chem. 2(1),1-12(2012).
  • [42] P. Gramatica, N. Navas and R. Todeschini, 3D-Modelling and Prediction by WHIM Descriptors. Part 9. Chromatographic Relative Retention Time and Physico-Chemical Properties of Polychlorinated Biphenyls (PCBs), Chemom. Intell. Lab. Syst. 40, 53-63(1998).
  • [43] V. P. Solovev, A.Varnek and G. Wipff, Modeling of Ion Complexation and Extraction Using Substructural Molecular Fragments, J. Chem. Inf. Comput. Sci. 40, 847-858 (2000).
  • [44] A. Varnek, G. Wipff and V.P. Solovev, Towards an Information System on Solvent Extraction, Solvent Extr. Ion Exc. 19,791-837 (2001).
  • [45] A. Varnek, G. Wipff, V. P. Solovev, et al., Assessment of the macrocyclic effect for the complexation of crown-ethers with alkali cations using the substructural molecular fragments method, J. Chem. Inf. Comput. Sci. 42(4), 812-829 (2002).
  • [46] V. P. Solovev and A. Varnek, Anti-HIV activity of hept, tibo and cyclic urea derivatives: structure-property studies, focused combinatorial library generation and hits selection using substructural molecular fragments method, J. Chem. Inf. Comp. Sci. 43(5), 1703-1719(2003).
  • [47] V. P. Solovev and A. Varnek, Structure-property modeling of metal binders using molecular fragments, Russ. Chem. Bull. 53,1434-1445(2004).
  • [48] A. Varnek and V. P. Solovev, “In Silico” design of potential anti-hiv actives using fragment descriptors, Comb. Chem. High T. Scr. 8(5), 403-416 (2005).
  • [49] A.Varnek, D. Fourches, F. Hoonakker, et al., Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures, J. Comput. Aided Mol. Des. 19, 693-703 (2005).
  • [50] A. Dalby, J. G. Nourse, W. D. Hounshell, et al., Description of several chemical structure file formats used by computer programs developed at molecular design limited, J. Chem. Inf. Comput. Sci. 32, 244-255 (1992).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0f5a328-eaf1-4ab4-a4a0-b263a61f60b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.