Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research explores innovative methods for compensating slow drift and measurement errors in fibre-optic gyroscope (FOG) systems, caused by environmental factors, particularly temperature variations. The study focuses on directly measuring the optical path length in FOG systems to mitigate these errors. Three architectures are proposed for implementing optical path measurement: using an optical coupler with an additional pulse laser, employing a micro-electro-mechanical systems (MEMS) optical switch with a pulse laser, and utilizing additional multifunction integrated optics chip (MIOC) control. All solutions utilize the time-of-flight (ToF) principle to measure changes in optical path length. The research demonstrates the feasibility of real-time optical path length measurement in FOG systems without significantly disrupting their operation. This approach shows promise for improving the accuracy of FOG-based sensors in applications such as inertial navigation systems, civil engineering, and rotational seismography, where environmental factors can lead to accumulating errors over time. The findings provide a foundation for further research and development in navigation and sensing applications, with the MIOC-based solution considered most promising due to its minimal required changes to existing FOG systems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e154748
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
- KJK Innovations sp. z o.o., ul. Kazimierza Sotta “Sokoła” 9/4, 02-790 Warszawa, Poland
autor
- Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warszawa, Poland
Bibliografia
- [1] Lefèvre, H. C. The Fiber-Optic Gyroscope, Second Edition. (Artech House, Boston, 2014).
- [2] Jaroszewicz, L. R. et al. FOSREM - Fibre-Optic System for Rotational Events & Phenomena Monitoring Project WebAge https://fosrem.eu/?page_id=807 (access: 2025.04.13).
- [3] Lefèvre, H. C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology. Opt. Fiber Technol. 19, 828-832 (2023). https://doi.org/10.1016/j.yofte.2013.08.007.
- [4] Zając, P., Amrozik, P., Kiełbik, R., Maj, C. & Szerm, M. Self-noise reduction in a FOG-based rotational seismometer confirmed by Allan variance analysis. Opto-Electron. Rev. 4, e152766 (2024) https://doi.org/10.24425/opelre.2024.152766.
- [5] Кorkishko, Y. N. et al. Interferometric closed-loop fiber-optic gyroscopes. Proc. SPIE 8351, 83513L-8 (2012). https://doi.org/10.1117/12.912937.
- [6] Korkishko, Y. N. et al. High-Precision Fiber Optical Gyro with Extended Dynamical Range. in 2014 DGON Inertial Sensors and Systems (ISS) 1-14 (IEEE, 2014). https://doi.org/10.1109/InertialSensors.2014.7049410.
- [7] He, M. et al. The space cold atom interferometer for testing the equivalence principle in the China Space Station. NPJ Microgravity 9, 58 (2023). https://doi.org/10.1038/s41526-023-00306-y.
- [8] Temperature Drift and Compensation Method of FOG Gyro ERICCO https://www.ericcointernational.com/application/temperature-drift-and-compensation-method-of-fog-gyro.html (access: 2025.04.13).
- [9] Li, Y. et al. Thermal phase noise in giant interferometric fiber optic gyroscopes. Opt. Express 27, 14121-14132 (2019). https://doi.org/10.1364/OE.27.014121.
- [10] Jaroszewicz, J. R. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161 (2016), https://doi.org/10.3390/s16122161.
- [11] Kurzych, A. et al. Fibre-optic Sagnac interferometer in a FOG minimum configuration as instrumental challenge for rotational seismology. J. Light. Technol. 36, 879-884 (2018). https://doi.org/10.1109/JLT.2017.2769136.
- [12] Кorkishko, Y. N. et al. Interferometric сlosed-loop fiber-optic gyroscopes. Proc. SPIE 8351, 83513L (2012). https://doi.org/10.1117/12.912937.
- [13] TIE-19 Temperature Coefficient of the Refractive Index SCHOTT schott-tie-19-temperature-coefficient-of-refractive-index-eng.pdf (acccess: 2025.04.13).
- [14] ToF: Time-of-Flight - Overview, Principles, Advantages AVSYSTEM https://avsystem.com/blog/linkyfi/time-of-flight (access: 2025-04-13).
- [15] LIDAR, Optical Distance & Time of Flight Sensors AMS OSRAM https://ams-osram.com/innovation/technology/depth-and-3d-sensing/lidar-optical-distance-and-time-of-flight-sensors (access: 2024.04.13).
- [16] Understanding Time of Flight Systems: TOF, iTOF, and dTOF Lumispot Photoelectric Science & Technology Co. Ltd. https://www.lumimetric.com/en/new/TOF-time-of-flight-definition-and-principle.html (access: 2025.04.13).
- [17] Kurzych, A. T., Jaroszewicz L. R., Dudek, M., Sakowicz, B. & Kowalski, J. K. Towards uniformity of rotational events recording – initial data from common test engaging more than 40 sensors including a wide number of fiber-optic rotational seismometers. Opto-electron. Rev., 29, 39-44 (2021). https://doi.org/10.24425/opelre.2021.135827.
- [18] Jaroszewicz, L. R. et al. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19, 2699 (2019). https://doi.org/10.3390/s19122699.
- [19] Skalský, M., Havránek, Z. & Fialka, J. Efficient modulation and processing method for closed-loop fiber optic gyroscope with piezoelectric modulator. Sensors 19, 1710 (2019). https://doi.org/10.3390/s19071710.
- [20] Niespodziany, S., Kurzych, A. T. & Dudek, M. Detector diode circuit noise measurement and power supply method selection for the fiber optic seismograph. Opto-Electron. Rev. 29, 71-79 (2021). https://doi.org/10.24425/opelre.2021.135830.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0f50f88-c4e5-4ccf-adb1-32d7bc07ffd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.