Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The dual-phase lag equation is formulated for the case when the thermophysical parameters occurring in this equation are temperature-dependent. The axial-symmetrical domain of biological tissue heated by an external heat source is considered. The problem is solved using the implicit scheme of the finite difference method. At the stage of numerical computations, the analytical relationships taken from the literature describing changes in parameters are taken into account.
Rocznik
Tom
Strony
85--98
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Department of Computational Mechanics and Engineering, Silesian University of Technology Gliwice, Poland
autor
- Department of Computational Mechanics and Engineering, Silesian University of Technology Gliwice, Poland
Bibliografia
- [1] Pennes, H.H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1, 93-122.
- [2] Cattaneo, M.C. (1958). A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus, 247, 431-433.
- [3] Vernotte, P. (1958). Les paradoxes de la theorie continue de l’equation de la chaleur. Compte Rendus, 246, 3154-3155.
- [4] Tzou, D.Y. (1996). Macro- to Microscale Heat Transfer: The Lagging Behavior. Washington, DC: Taylor and Francis.
- [5] Choudhuri, S.R. (2007). On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 30, 231-238.
- [6] Singh, S., Saccomandi, P., & Melnik, R. (2022). Three-phase-lag bio-heat transfer model of cardiac ablation. Fluids, 7(180) (15pp).
- [7] Kumar, D., & Rai, K.N. (2022). Three-phase-lag bioheat transfer model and its validation with experimental data. Mechanics Based Design of Structures and Machines, 50(7), 2493-2507.
- [8] Zhang, Y. (2009). Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. International Journal of Heat and Mass Transfer, 52, 4829-4834.
- [9] Jamshidi, M., & Ghazanfarian, J. (2021). Blood flow effects in thermal treatment of three-dimensional non-Fourier multilayered skin structure. Heat Transfer Engineering, 42(11), 929-946.
- [10] Majchrzak, E., & Stryczyński, M. (2021). Dual-phase lag model of heat transfer between blood vessel and biological tissue. Mathematical Biosciences and Engineering, 18(2), 1573-1589.
- [11] Bianchi, L., Cavarzan, F., Ciampitti, L., Cremonesi, M., Grilli, F., & Saccomandi, P. (2022). Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. International Journal of Hyperthermia, 39(1), 297-340.
- [12] Rossmann, Ch., & Haemmerich, D. (2014). Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Critical Reviews in Biomedical Engineering, 42(6), 467-492.
- [13] Silva, N.P., Bottiglieri, A., Conceição, R.C., O’Halloran, M., & Farina, L. (2020). Characterisation of ex vivo liver thermal properties for electromagnetic-based hyperthermic therapies. Sensors, 20, 3004 (14pp).
- [14] Mohammadi, A., Bianchi, L., Asadi, S., & Saccomandi, P. (2021). Measurement of ex vivo liver, brain and pancreas thermal properties as function of temperature. Sensors, 21, 4236 (15pp).
- [15] Lopresto, V., Argentieri, A., Pinto, R., & Cavagnaro, (2019). Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures. Physics in Medicine & Biology, 105016 (15pp).
- [16] Iljaž, J., Wrobel, L.C., Hriberšek, M., & Marn, J. (2019). Numerical modelling of skin tumour tissue with temperature-dependent properties for dynamic thermography. Computers in Biology and Medicine, 112, 103367 (15pp).
- [17] Majchrzak, E., & Kałuża, G. (2022). Sensitivity analysis of temperature in heated soft tissues with respect to time delays. Continuum Mechanics and Thermodynamics, 34, 587-599.
- [18] Majchrzak, E., & Mochnacki, B. (2017). Implicit scheme of the finite difference method for 1D dual-phase lag equation. Journal of Applied Mathematics and Computational Mechanics, 16(3), 37-46.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0f156af-72a0-42a9-ab36-f44de0b2b37f