Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Obliczanie prądu porażenia prądem wywołanym napięciem dotykowym i krokowym w sieciach uziemiających z uwzględnieniem warunków klimatycznych
Języki publikacji
Abstrakty
Appropriately designed grounding should provide such a distribution of electrical potential on the ground surface to ensure the values of electric shock currents are at an acceptable level. The potential distribution depends on the design and size of the grounding system and the resistivity of the soil. The value of the electric shock current depends on the distribution of electrical potential on the ground surface determining the values of step and touch voltages and the impedance of the human body. The impedance value of the human body is affected by factors such as the condition of the epidermis, and the path of shock, but also environmental factors such as humidity and temperature. The article presents the results of calculations of human body impedance and electric shock current for different environmental conditions and different design variants of the grounding system, determining the values of step and touch voltages.
Odpowiednio zaprojektowane uziemienie powinno zapewniać taki rozkład potencjału elektrycznego na powierzchni gruntu, aby zapewnić wartości prądów rażeniowych na akceptowalnym poziomie. Rozkład potencjału zależy od konstrukcji i rozmiaru systemu uziemienia oraz rezystywności gruntu. Wartość prądu rażeniowego zależy od rozkładu potencjału elektrycznego na powierzchni ziemi, określającego wartości napięć krokowych i dotykowych oraz impedancji ludzkiego ciała. Na wartość impedancji ciała człowieka mają wpływ takie czynniki jak stan naskórka, droga rażenia, ale także czynniki środowiskowe takie jak wilgotność i temperatura. W artykule przedstawiono wyniki obliczeń impedancji ciała człowieka i prądu rażenia dla różnych warunków środowiskowych i dla różnych wariantów projektowych systemu uziemienia, determinującego wartości napięć krokowych i dotykowych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
217--220
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Lodz University of Technology, Institute of Electrical Power Engineering, 20 Stefanowski Str., 90 537 Lodz
autor
- Lodz University of Technology, Institute of Electrical Power Engineering, 20 Stefanowski Str., 90-537 Lodz
autor
- Lodz University of Technology, Institute of Electrical Engineering Systems, 18 Stefanowski Str., 90-537 Lodz
autor
- Department of Systems of Automatic Control and Electric Drive of Kremenchuk Mykhailo Ostrohradskyi National University, vul. Pershotravneva, 20, 39600, Ukraine
Bibliografia
- [1] IEEE 80 (2013) Guide for Safety in AC Substation Grounding, 2013
- [2] Wołkowiński K. Uziemienia urządzeń elektroenergetycznych, WNT Warszawa, 1967
- [3] ChunLan L., SongHuai D., Yue X. Study on equivalent circuit of the human body and its transient response against electric shock, 2011 International Conference on Advanced Power System Automation and Protection, 2011, doi: 10.1109/APAP.2011.6180469
- [4] Gierlotka S. Elektropatologia porażeń prądem elektrycznym oraz bezpieczeństwo przy urządzeniach elektrycznych, Zeszyty dla elektryków-nr 12, MEDIUM, Warszawa, 2015, ISBN 978- 83-64094-43-9
- [5] Datsios Z.G., Mikropoulos P.N., Safety performance evaluation of typical grounding configurations of MV/LV distribution substations, Electric Power Systems Research, 150(2017), 36- 44
- [6] Gazzanaa D.S., Bretasa A.S., Diasa G.A.D, Tellób M., Thomasc D.W.P., Christopoulosc C., A study of human safety against lightning considering the grounding system and the evaluation of the associated parameters, Electric Power Systems Research ,113 (2014), 88–94
- [7] Hua H., Luob R., Fangb M., Zenga S., Hub F., A new optimization design for grounding grid, Electrical Power and Energy Systems, 108(2019), 61–71
- [8] Parise G., Parise L. and Martirano L., Intrinsically Safe Grounding Systems and Global Grounding Systems, IEEE Transactions on Industry Applications, 54(2018), 25-31
- [9] Enrique E.H. and Walsh J.D., Analysis of Touch Potentials in Solar Farms, IEEE Transactions On Industry Applications, 51(2015),4291-4296
- [10] Gumiela J., Sztafrowski D. The modified numerical method for digital simulations of electrical fields distribution, Przeglad Elektrotechniczny, (2016) 92, 12, 45-48, doi:10.15199/48.2016.12.12
- [11] Rymarczyk T., Duda K., Sikora J. Using Electrical Resistance Tomography to Detect Leaks in Landfills, Przeglad Elektrotechniczny, (2017), 93, 12, 155-158 doi:10.15199/48.2017.12.39
- [12] Zagórda, M., Kurpaska, S., Dróżdż, T., Kiełbasa, P., Žitňák, M. Identification of diversification of soil rheological structure based on electrical conductivity maps, Przeglad Elektrotechniczny, (2020), 96, 2, 67-70, doi: 10.15199/48.2020.02.15
- [13] Faleiro E., Asensio G., Moreno J., Simón P., Denche G., García D., Modelling and simulation of the grounding system of a class of power transmission line towers involving inhomogeneous conductive media, Electric Power Systems Research, 136(2016), 154-162
- [14] Raizer A., Valente W., Coelho V.L., Development of a new methodology for measurements of earth resistance, touch and step voltages within urban substations, Electric Power Systems Research, 153(2017), 111-118
- [15] Pappas S.Sp., Ekonomou L., Karampelas P., Katsikas S.K., Liatsis P., Modeling of the grounding resistance variation using ARMA models, Simulation Modelling Practice and Theory ,16 (2008), 560–570
- [16] Trifunovic J., Kostic M., Quick calculation of the grounding resistance of a typical 110 kV transmission line tower grounding system, Electric Power Systems Research, 131(2016), 178–186
- [17] Cafaro G., Colella P., Montegiglio P., Pons E., Tommasini R., Torelli F.and Valtorta G., Ground Resistance of Buried Metallic Parts in Urban Areas: An Extensive Measurement Campaign, IEEE Transactions on Industry Applications, 53 (2017),5209- 5216
- [18] Colella P., Pons E., Tommasini R., Di Silvestre M.L., Sanseverino E.R. and Zizzo G., Fall of Potential Measurement of the Earth Resistance in Urban Environments: Accuracy Evaluation, IEEE Transactions on Industry Applications, 55(2019),2337-2346
- [19] Caetano C.E.F., Paulino J.O.S., Barbosa C.F., de Silva J. O. C. and Panicali A.R., A New Method for Grounding Resistance Measurement Based on the Drained Net Charge, IEEE Transactions on Power Delivery, 34(2019), 1011-1017
- [20] Androvitsaneasa V.P., Alexandridisb A.K., Gonosa I.F., Douniasc G.D., Stathopulosa I.A., Wavelet neural network methodology for ground resistance forecasting, Electric Power Systems Research, 140(2016), 288–295
- [21] Guo D., Clark D., Lathi D., Harid N., Griffiths H., Ainsley A. and Haddad A., Controlled Large-Scale Tests of Practical Grounding Electrodes—Part I: Test Facility and Measurement of Site Parameters, IEEE TRANSACTIONS ON POWER DELIVERY, 29(2014),1231-1239
- [22] Coelho V.L., Piantini A., Almaguer H.A.D., Coelho R.A., Boaventura W.C., Paulino J.O.S., The influence of seasonal soil moisture on the behavior of soil resistivity and power distribution grounding systems, Electric Power Systems Research, 118(2015), 76-82
- [23] Xishan W., Maoheng J., Hansheng C., Yanhui Z., Shangmao H., Yun T., Gang L., Lei L., Hailiang L., Temperature characteristics and influence of water-saturated soil resistivity on the HVDC grounding electrode temperature rise, International Journal of Electrical Power & Energy Systems, 118 (2020), 1-10
- [24] Lua C., Lia L., Liua Z., Xud Ch., Xind M., Fua G., Wang T., Wang X., Location and corrosion detection of tower grounding conductors based on electromagnetic measurement, Measurement, 199(2022), 111469
- [25] Alipio R., Coelho V.L., Canever G.L., Experimental analysis of horizontal grounding wires buried in high-resistivity soils subjected to impulse currents, Electric Power Systems Research, 214(2023), 1-8
- [26] Nor N.M., Rajab R., Othman Z., Validation of the earth resistance formulae using computational and experimental methods for gas insulated sub-station (GIS), International Journal of Electrical Power & Energy Systems, 43(2012), 290- 294
- [27] Kostic ́ V.I. , Raicˇevic ́ N.B., An alternative approach for touch and step voltages measurement in high-voltage substations, Electric Power Systems Research, 130 (2016), 59–66
- [28] Parise G. and Lucheroni M., Measurements of Touch and Step Voltages Adopting Current Auxiliary Electrodes at Reduced Distance, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 44(2008), 1896-1901
- [29] IEEE 80 Guide for Safety in AC Substation Grounding (2013).
- [30] Sikora R. Markiewicz P. Reduction of step voltages of MV/LV substation grounding system based on shaping electric field, Archives of Electrical Engineering, 70(2021), 601-615
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Identyfikator YADDA
bwmeta1.element.baztech-a0f14741-e241-438b-b293-cc1a84df363e