PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Susceptibility of switching between in-phase and anti-phase patterns in the network of relaxation oscillators

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Neural networks composed of two or four cells with combined, electrical and inhibitory, synapses and realized for various network topologies were examined. The aim of this study was to determine a set of phases of oscillatory cycle in which different patterns of activity, characteristic for such networks, can be switched under an external stimulus. In particular, we studied susceptibility of switching between in-phase (IP) and anti-phase (AP) patterns (and vice versa). Our results demonstrate that windows of switching between patterns are similar for networks with electrical and mixed synapses and, in general, relatively independent of the network topology. The only effect of the network topology is an increase of the robustness of the AP pattern in networks of ring-like connectivity. The switching window width and thereby the robustness of the transitions between patterns decreases with the increase of the electrical coupling strength.
Twórcy
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
  • Univ. Bordeaux, IMN, UMR 5293, Bordeaux, France; CNRS, IMN, UMR 5293, Bordeaux, France
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Belousov AB, Fontes JD. Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci 2013;36(4):227–36.
  • [2] Nakase T, Naus CC. Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta 2004;1662(1–2):149–58.
  • [3] Mercer A. Electrically coupled excitatory neurones in cortical regions. Brain Res 2012;1487:192–7.
  • [4] Galarreta M, Hestrin S. Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2001;2(6):425–33.
  • [5] Bennett MV, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 2004;41 (4):495–511.
  • [6] Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE, et al. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta 2013;1828(1):134–46.
  • [7] Nagy JI, Dudek FE, Rash JE. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 2004;47(1–3):191–215.
  • [8] Ducret E, Alexopoulos H, Le Feuvre Y, Davies JA, Meyrand P, Bacon JP, et al. Innexins in the lobster stomatogastric nervous system: cloning, phylogenetic analysis, developmental changes and expression within adult identified dye and electrically coupled neurons. Eur J Neurosci 2006;24(11):3119–33.
  • [9] Phelan P. Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 2005;1711(2):225–45.
  • [10] Hartveit E, Veruki ML. Electrical synapses between AII amacrine cells in the retina: function and modulation. Brain Res 2012;1487:160–72.
  • [11] Szabo TM, Caplan JS, Zoran MJ. Serotonin regulates electrical coupling via modulation of extrajunctional conductance: H-current. Brain Res 2010;1349:21–31.
  • [12] Zsiros V, Maccaferri G. Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J Neurosci 2008;28(8):1804–15.
  • [13] Chang Q, Pereda A, Pinter MJ, Balice-Gordon RJ. Nerve injury induces gap junctional coupling among axotomized adult motor neurons. J Neurosci 2000;20(2):674–84.
  • [14] Haas JS, Zavala B, Landisman CE. Activity-dependent long-term depression of electrical synapses. Science 2011;334 (6054):389–93.
  • [15] Xin D, Bloomfield SA. Effects of nitric oxide on horizontal cells in the rabbit retina. Vis Neurosci 2000;17(5):799–811.
  • [16] Piccolino M, Neyton J, Gerschenfeld HM. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 30:50-monophosphate in horizontal cells of turtle retina. J Neurosci 1984;4(10):2477–88.
  • [17] He S, Weiler R, Vaney DI. Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. J Comp Neurol 2000;418(1):33–40.
  • [18] Belluardo N, Mudò G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, et al. Expression of connexin36 in the adult and developing rat brain. Brain Res 2000;865(1):121–38.
  • [19] Arumugam H, Liu X, Colombo PJ, Corriveau RA, Belousov AB. NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat Neurosci 2005;8(12):1720–6.
  • [20] Mentis GZ, Díaz E, Moran LB, Navarrete R. Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats. J Physiol 2002;544: 757–64.
  • [21] Pastor AM, Mentis GZ, De La Cruz RR, Díaz E, Navarrete R. Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat. J Neurophysiol 2003;89(2):793–805.
  • [22] Marder E, Bucher D, Schulz DJ, Taylor AL. Invertebrate central pattern generation moves along. Curr Biol 2005;15 (17):685–99 [review].
  • [23] Marder E, Bucher D. Understanding circuit dynamics using the stomatogastric system of lobsters and crabs. Annu Rev Physiol 2007;69:291–316 [review].
  • [24] Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 2006;52 (5):751–66 [review].
  • [25] Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE. Microcircuits in action: from CPGs to neocortex. Trends Neurosci 2005;10:525–33 [review].
  • [26] Marder E. Neuromodulation of neuronal circuits: back to the future. Neuron 2012;76(1):1–11 [review].
  • [27] Bem T, Le Feuvre Y, Simmers J, Meyrand P. Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit. J Neurophysiol 2002;87:538–47.
  • [28] Bem T, Hallam J, Meyrand P, Rinzel J. Electrical coupling and bistability in inhibitory neuronal networks. Biocybern Biomed Eng 2006;26(2):3–14.
  • [29] Bem T, Meyrand P, Branchereau P, Hallam J. Multi-stability and pattern-selection in oscillatory networks with fast inhibition and electrical synapses. PLoS ONE 2008. http://dx.doi.org/10.1371/journal.pone.0003830.
  • [30] Ostaszewski H, Meyrand P, Branchereau P, Hallam J, Bem T. Multi-stability of in-phase and anti-phase activity patterns in neural networks with inhibitory and electrical synapses. Biocybern Biomed Eng 2010;30(3):3–17.
  • [31] Bem T, Rinzel J. Short duty cycle destabilizes a half-center oscillator: but gap junctions can restabilize the anti-phase pattern. J Neurophysiol 2004;91(2):693–703.
  • [32] Terman D, Lee E, Rinzel J, Bem T. Stability of anti-phase and in-phase locking by electrical coupling but not fast inhibition alone. SIAM J Appl Dyn Syst 2011;10:1127–53.
  • [33] Tabak J, O'Donovan MJ, Rinzel J. Differential control of active and silent phases in relaxation models of neuronal rhythms. J Comput Neurosci 2006;21(3):307–28.
  • [34] Meyrand P, Bem T. Variety of alternative stable phase-locking in the network of electrically coupled relaxation oscillators. PLoS ONE 2014. http://dx.doi.org/10.1371/journal.pone.0086572.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0ec3208-0076-479e-b1a5-886a6b7cd819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.