PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LoRaWAN Communication Implementation Platforms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A key role in the development of smart Internet of Things (IoT) solutions is played by wireless communication technologies, especially LPWAN (Low-Power Wide-Area Network), which are becoming increasingly popular due to their advantages: long range, low power consumption and the ability to connect multiple edge devices. However, in addition to the advantages of communication and low power consumption, the security of transmitted data is also important. End devices very often have a small amount of memory, which makes it impossible to implement advanced cryptographic algorithms on them. The article analyzes the advantages and disadvantages of solutions based on LPWAN communication and reviews platforms for IoT device communication in the LoRaWAN (LoRa Wide Area Network) standard in terms of configuration complexity. It describes how to configure an experimental LPWAN system being built at the Department of Computer Science and Telecommunications at Poznan University of Technology for research related to smart buildings.
Rocznik
Strony
841--854
Opis fizyczny
Bibliogr. 106 poz., for., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Institute of Radiocommunications, Poland
  • Poznan University of Technology, Institute of Computing Science, Poland
  • Poznan University of Technology, Institute of Radiocommunications, Poland
  • Poznan University of Technology, Institute of Computing Science, Poland
Bibliografia
  • [1] Greenhouse gas emissions in the European Union. Available online: https://www.europarl.europa.eu/ news/pl/headlines/priorities/zmiana-klimatu/ 20180301STO98928/infografika-emisje-gazow-cieplarnianych-w-unii-europejskiej (accessed on 10.10.2022).
  • [2] ICT’s potential to reduce greenhouse gas emissions in 2030. Available online: https://www.ericsson.com /en/reports-and-papers/ research-papers/exploring-the-effects-of-ict-solutions-on-ghg-emissions-in-2030 (accessed on 10.10.2022).
  • [3] Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.-W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. https://doi.org/10.3390/s22062087.
  • [4] Future of Industry Ecosystems: Shared Data and Insights. Available online: https://blogs.idc.com/2021/ 01/06/future-of-industry-ecosystems-shared-data-and-insights/ (accessed on 10.10.2022).
  • [5] Energy minimization in mobile networks. Orange report. https://biuroprasowe.orange.pl/blog/siec-komorkowa-moze-byc-bardziej-energooszczedna-w-orange-polska-zuzywany-duzo-mnie-pradu-w-przeliczeniu-na-przeslany-gigabajt/ (accessed on 10.10.2022).
  • [6] F. U. Khan, M. Awais, M. B. Rasheed, B. Masood and Y. Ghadi, "A Comparison of Wireless Standards in IoT for Indoor Lo-calization Using LoPy," in IEEE Access, vol. 9, pp. 65925-65933, 2021, https://doi.org/10.1109/ACCESS.2021.3076371.
  • [7] Xiang Li, Daqing Zhang, Jie Xiong, Yue Zhang, Shengjie Li, Yasha Wang, and Hong Mei. 2018. Training-Free Human Vitality Monitoring Using Commodity Wi-Fi Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 121 (Sep-tember 2018), 25 pages. https://doi.org/10.1145/3264931.
  • [8] Wang Y., Wu K., Ni L.M.: ‘WiFall: device-free fall detection by wireless networks’, IEEE Trans. Mob. Comput., 2017, 16, (2), pp. 581-594.
  • [9] Wang X., Yang C., Mao S.: ‘TensorBeat: tensor decomposition for monitoring multi-person breathing beats with commodity WiFi’, arXiv:1702.02046, 2017.
  • [10] Yigitler H., Kaltiokallio O. J., Hostettler R. et al.: ‘RSS models for respiration rate monitoring’, IEEE Trans. Mob. Comput., 2019, Early Access.
  • [11] Zhang F., Zhang D., Xiong J. et al.: ‘From Fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices’. Proc. ACM Interactive, Mobile, Wearable and Ubiquitous Technology, Singapore, Singapore, 2018.
  • [12] Kun Qian, Chenshu Wu, Yi Zhang, Guidong Zhang, Zheng Yang, and Yunhao Liu. 2018. Widar2.0: Passive Human Tracking with a Single Wi-Fi Link. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys '18). Association for Computing Machinery, New York, NY, USA, 350-361. https://doi.org/10.1145/3210240.3210314.
  • [13] H. Li, K. Ota, M. Dong and M. Guo, "Learning Human Activities through Wi-Fi Channel State Information with Multiple Access Points," in IEEE Communications Magazine, vol. 56, no. 5, pp. 124-129, May 2018, https://doi.org/10.1109/MCOM.2018.1700083.
  • [14] M. Soni, A. Jain and T. Patel, "Human Movement Identification Using Wi-Fi Signals," 2018 3rd International Conference on Inventive Computation Technologies (ICICT), 2018, pp. 422-427, https://doi.org/10.1109/ICICT43934.2018.9034451.
  • [15] Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, Aravind C.V., Device free human gesture recognition using Wi-Fi CSI: A survey, Engineering Applications of Artificial Intelligence, Volume 87, 2020, 103281, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2019.103281.
  • [16] Venkatnarayan R.H., Page G., Shahzad M.: ‘Multi-user gesture recognition using Wi-Fi’. Proc. 16th Annual Int. Conf. on Mobile Systems, Applications, and Services, Munich Germany, June 2018, pp. 401-413.
  • [17] Haseeb M.A., Parasuraman R.: ‘Wisture: touch-less hand gesture classification in unmodified smartphones using Wi-Fi signals’, IEEE Sens. J., 2019, 19, (1), pp. 257-267.
  • [18] Xu Q., Chen Y., Wang B. et al.: ‘TRIEDS: wireless events detection through the wall’, IEEE Internet Things J., 2017, 4, pp. 723-735.
  • [19] Wu X., Chu Z., Yang P. et al.: ‘TW-See: human activity recognition through the wall with commodity Wi-Fi devices’, IEEE Trans. Veh. Technol., 2019, 68, (1), pp. 306-319.
  • [20] M. Sikandar, H. Khiyal, A. Khan and E. Shehzadi, SMS Based Wireless Home Appliance Control System (HACS) for Auto-mating Appliances and Security Preliminaries Home Appliance Control System (HACS), vol. 6, 2009.
  • [21] Depatla S., Muralidharan A., Mostofi Y., ‘Occupancy estimation using only WiFi power measurements’, IEEE J. Sel. Areas Commun., 2015, 33, (7), pp. 1381-1393.
  • [22] Zheng X., Wang J., Shangguan L. et al.: ‘Design and implementation of a CSI-based ubiquitous smoking detection system’, IEEE/ACM Trans. Netw., 2017, 25, (6), pp. 3781-3793.
  • [23] J. Bhatt and H. K. Verma, "Design and Development of Wired Building Automation Systems", Energy Build., vol. 103, pp. 396-413, 2015.
  • [24] Maternaghan et al., "Home automation system using a wireless network", IEEE Transactions on Consumer Electronics, vol. 44, no. 4, pp. 153-171, 2014.
  • [25] S. Jakovljev, M. Subotic and I. Papp, "Realisation of a Smart Plug device based on Wi-Fi technology for use in home automation systems", 2017 IEEE Int. Conf. Consum. Electron. ICCE 2017, pp. 327-328, 2017.
  • [26] Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. https://doi.org/10.3390/en13020494.
  • [27] Zanaj, E.; Caso, G.; De Nardis, L.; Mohammadpour, A.; Alay, Ö.; Di Benedetto, M.-G. Energy Efficiency in Short and Wide-Area IoT Technologies-A Survey. Technologies 2021, 9, 22. https://doi.org/10.3390/technologies9010022.
  • [28] K. E. Jeon, J. She, P. Soonsawad and P. C. Ng, "BLE Beacons for Internet of Things Applications: Survey, Challenges, and Opportunities," in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 811-828, April 2018, https://doi.org/10.1109/JIOT.2017.2788449.
  • [29] P. Spachos and K. N. Plataniotis, "BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum," in IEEE Systems Journal, vol. 14, no. 3, pp. 3483-3493, Sept. 2020, https://doi.org/10.1109/JSYST.2020.2969088.
  • [30] P. Spachos and K. Plataniotis, "BLE Beacons in the Smart City: Applications, Challenges, and Research Opportunities," in IEEE Internet of Things Magazine, vol. 3, no. 1, pp. 14-18, March 2020, https://doi.org/10.1109/IOTM.0001.1900073.
  • [31] Ke, C.; Wu, M.; Chan, Y.; Lu, K. Developing a BLE Beacon-Based Location System Using Location Fingerprint Positioning for Smart Home Power Management. Energies 2018, 11, 3464. https://doi.org/10.3390/en11123464.
  • [32] Alfian, G.; Syafrudin, M.; Ijaz, M.F.; Syaekhoni, M.A.; Fitriyani, N.L.; Rhee, J. A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing. Sensors 2018, 18, 2183. https://doi.org/10.3390/s18072183 [33] Hasan, M.K.; Shahjalal, M.; Chowdhury, M.Z.; Jang, Y.M. Real-Time Healthcare Data Transmission for Remote Patient Monitoring in Patch-Based Hybrid OCC/BLE Networks. Sensors 2019, 19, 1208. https://doi.org/10.3390/s19051208.
  • [34] Montoliu, R.; Sansano, E.; Gascó, A.; Belmonte, O.; Caballer, A. Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios. Electronics 2020, 9, 728. https://doi.org/10.3390/electronics9050728.
  • [35] Chaari Fourati, L., Said, S. (2020). Remote Health Monitoring Systems Based on Bluetooth Low Energy (BLE) Communication Systems. In: Jmaiel, M., Mokhtari, M., Abdulrazak, B., Aloulou, H., Kallel, S. (eds) The Impact of Digital Technologies on Public Health in Developed and Developing Countries. ICOST 2020. Lecture Notes in Computer Science(), vol 12157. Springer, Cham. https://doi.org/10.1007/978-3-030-51517-1_4.
  • [36] S. Das, S. Ganguly, S. Ghosh, R. Sarker and D. Sengupta, A Bluetooth Based Sophisticated Home Automation System Using Smartphone, pp. 236-240, 2016.
  • [37] M. Asadullah and K. Ullah, "Smart home automation system using Bluetooth technology", ICIEECT 2017 - Int. Conf. Innov. Electr. Eng. Comput. Technol. 2017 Proc., 2017.
  • [38] K. Khanchuea and R. Siripokarpirom, "A Multi-Protocol IoT Gateway and WiFi/BLE Sensor Nodes for Smart Home and Building Automation: Design and Implementation," 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), 2019, pp. 1-6, https://doi.org/10.1109/ICTEmSys.2019.8695968.
  • [39] Chellappa, M., Madasamy, S., Prabakaran, R. (2011). Study on ZigBee technology. 297-301. https://doi.org/10.1109/ICECTECH.2011.5942102.
  • [40] Jie Xiao, Jing Tao Li, Design and Implementation of Intelligent Temperature and Humidity Monitoring System Based on ZigBee and WiFi, Procedia Computer Science, Volume 166, 2020, Pages 419-422, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.02.072.
  • [41] K. Xia, J. Ni, Y. Ye, P. Xu and Y. Wang, "A real-time monitoring system based on ZigBee and 4G communications for photo-voltaic generation," in CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 52-63, March 2020, https://doi.org/10.17775/CSEEJPES.2019.01610.
  • [42] Liang, C.B., Tabassum, M., Kashem, S.B.A., Zama, Z., Suresh, P., Saravanakumar, U. (2021). Smart Home Security System Based on Zigbee. In: Suresh, P., Saravanakumar, U., Hussein Al Salameh, M. (eds) Advances in Smart System Technologies. Advances in Intelligent Systems and Computing, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-15-5029-4_71.
  • [43] Allahham, Alaa & Rahman, Md Arafatur. (2018). A SMART MONITORING SYSTEM FOR CAMPUS USING ZIGBEE WIRELESS SENSOR NETWORKS. International Journal of Software Engineering and Computer Systems. 4. 1-14. https://doi.org/10.15282/ijsecs.4.1.2018.1.0034.
  • [44] Z. Qadir, F. Al-Turjman, M. A. Khan and T. Nesimoglu, "ZIGBEE Based Time and Energy Efficient Smart Parking System Using IOT," 2018 18th Mediterranean Microwave Symposium (MMS), 2018, pp. 295-298, https://doi.org/10.1109/MMS.2018.8611810.
  • [45] V. Aswin Raaju, J. Mappilllai Meeran, M. Sasidharan and K. Premkumar, "IOT Based Smart Garbage Monitoring System Using ZigBee," 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), 2019, pp. 1-7, https://doi.org/10.1109/ICSCAN.2019.8878742.
  • [46] I. Ali, S. Z. Partal, S. Kepke and H. P. Partal, "ZigBee and LoRa based Wireless Sensors for Smart Environment and IoT Applications," 2019 1st Global Power, Energy and Communication Conference (GPECOM), 2019, pp. 19-23, https://doi.org/10.1109/GPECOM.2019.8778505.
  • [47] Z-Wave Alliance website. Available online: https://z-wavealliance.org/z-wave-global-regions/ (accessed on 10.10.2022).
  • [48] Luchian, A. Taut, I. Ivanciu, G. Lazar and V. Dobrota, "Z-Wave-Based Vehicular Blackbox with Automatic Emergency Assistance," 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), 2018, pp. 85-90, https://doi.org/10.1109/LANMAN.2018.8475110.
  • [49] Wei, Y. Chen, C. Chang and C. Yu, "The Implementation of Smart Electronic Locking System Based on Z-Wave and In-ternet," 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 2015-2017, https://doi.org/10.1109/SMC.2015.351.
  • [50] M. B. Yassein, W. Mardini and A. Khalil, "Smart homes automation using Z-wave protocol," 2016 International Conference on Engineering & MIS (ICEMIS), 2016, pp. 1-6, https://doi.org/10.1109/ICEMIS.2016.7745306.
  • [51] Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication Technologies for Smart Grid: A Comprehensive Survey. Sensors 2021, 21, 8087. https://doi.org/10.3390/s21238087.
  • [52] M. Chen, J. Yang, J. Zhou, Y. Hao, J. Zhang and C. -H. Youn, "5G-Smart Diabetes: Toward Personalized Diabetes Diagnosis with Healthcare Big Data Clouds," in IEEE Communications Magazine, vol. 56, no. 4, pp. 16-23, April 2018, https://doi.org/10.1109/MCOM.2018.1700788.
  • [53] Adhikari, A. Hetherington and S. Sur, "mmFlow: Facilitating At-Home Spirometry with 5G Smart Devices," 2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2021, pp. 1-9, https://doi.org/10.1109/SECON52354.2021.9491616.
  • [54] Ahad, A.; Tahir, M.; Aman Sheikh, M.; Ahmed, K.I.; Mughees, A.; Numani, A. Technologies Trend towards 5G Network for Smart Health-Care Using IoT: A Review. Sensors 2020, 20, 4047. https://doi.org/10.3390/s20144047.
  • [55] Ahad, M. Tahir and K. -L. A. Yau, "5G-Based Smart Healthcare Network: Architecture, Taxonomy, Challenges and Future Research Directions," in IEEE Access, vol. 7, pp. 100747-100762, 2019, https://doi.org/10.1109/ACCESS.2019.2930628.
  • [56] Dua, A. Dutta, N. Zaman and N. Kumar, "Blockchain-based E-waste Management in 5G Smart Communities," IEEE IN-FOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2020, pp. 195-200, https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162845.
  • [57] Shen, Y.; Fang, W.; Ye, F.; Kadoch, M. EV Charging Behavior Analysis Using Hybrid Intelligence for 5G Smart Grid. Electronics 2020, 9, 80. https://doi.org/10.3390/electronics9010080.
  • [58] Guevara, L.; Auat Cheein, F. The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems. Sustainability 2020, 12, 6469. https://doi.org/10.3390/su12166469.
  • [59] Sroka, P. and Kliks, A. (2022). 5G for V2X. In Wiley 5G Ref (eds R. Tafazolli, C.-L. Wang and P. Chatzimisios). https://doi.org/10.1002/9781119471509.w5GRef232.
  • [60] Ai, A. F. Molisch, M. Rupp and Z. -D. Zhong, "5G Key Technologies for Smart Railways," in Proceedings of the IEEE, vol. 108, no. 6, pp. 856-893, June 2020, https://doi.org/10.1109/JPROC.2020.2988595.
  • [61] LoRa Alliance website. Available online: https://lora-alliance.org/about-lorawan/ (accessed on 20 April 2022).
  • [62] Nowak, M., Koperski, B., Szymborska, A. (2016). Wykorzystanie standardu LoRaWAN do budowy bezprzewodowych sieci sensorowych w inteligentnych budynkach. Napędy i Sterowanie, nr 6, 120-123.
  • [63] Adefemi Alimi, K.O.; Ouahada, K.; Abu-Mahfouz, A.M.; Rimer, S. A Survey on the Security of Low Power Wide Area Networks: Threats, Challenges, and Potential Solutions. Sensors 2020, 20, 5800. https://doi.org/10.3390/s20205800.
  • [64] Butun, I., Pereira, N.S., & Gidlund, M. (2019). Security Risk Analysis of LoRaWAN and Future Directions. Future Internet, 11, 3.
  • [65] Foubert, B.; Mitton, N. Long-Range Wireless Radio Technologies: A Survey. Future Internet 2020, 12, 13. https://doi.org/10.3390/fi12010013.
  • [66] Chacko, S., Job, M.D. (2018). Security mechanisms and Vulnerabilities in LPWAN. IOP Conference Series: Materials Science and Engineering.
  • [67] Nowak, M.; Derbis, P.; Kurowski, K.; Rózycki, R.; Waligóra, G. LPWAN Networks for Energy Meters Reading and Monitoring Power Supply Network in Intelligent Buildings. Energies 2021, 14, 7924. https://doi.org/10.3390/en14237924.
  • [68] Sinha S.R., Wei Y., Hwang S.: A survey on LPWA technology: LoRa and NB-IoT, Division of Electronics and Electrical Engineering, Dongguk University - Seul, Korea 2017. [69] Pathak, G.; Gutierrez, J.; Rehman, S.U. Security in Low Powered Wide Area Networks: Opportunities for Software Defined Network-Supported Solutions. Electronics 2020, 9, 1195. https://doi.org/10.3390/electronics9081195.
  • [70] Basford, P.J.; Bulot, F.M.J.; Apetroaie-Cristea, M.; Cox, S.J.; Ossont, S.J. LoRaWAN for Smart City IoT Deployments: A Long Term Evaluation. Sensors 2020, 20, 648. https://doi.org/10.3390/s20030648.
  • [71] Nowak, M. (2016). Nowe rozwiązania informatyczne wspierające systemy sterowania, monitorowania i wizualizacji w gospodarce wodno-ściekowej. [w:] Zaopatrzenie w wodę, jakość i ochrona wód. ISBN: 9788364959455.
  • [72] Cappelli, I.; Parrino, S.; Pozzebon, A.; Salta, A. Providing Energy Self-Sufficiency to LoRaWAN Nodes by Means of Thermo-electric Generators (TEGs)-Based Energy Harvesting. Energies 2021, 14, 7322. https://doi.org/10.3390/en14217322.
  • [73] Bäumker, E.; Conrad, L.; Comella, L.M.; Woias, P. A Fully Featured Thermal Energy Harvesting Tracker for Wild-life. Energies 2021, 14, 6363. https://doi.org/10.3390/en14196363.
  • [74] Rinaldi, S.; Pasetti, M.; Sisinni, E.; Bonafini, F.; Ferrari, P.; Rizzi, M.; Flammini, A. On the Mobile Communication Requirements for the Demand-Side Management of Electric Vehicles. Energies 2018, 11, 1220. https://doi.org/10.3390/en11051220.
  • [75] Sharma, V.; You, I.; Pau, G.; Collotta, M.; Lim, J.D.; Kim, J.N. LoRaWAN-Based Energy-Efficient Surveillance by Drones for Intelligent Transportation Systems. Energies 2018, 11, 573. https://doi.org/10.3390/en11030573.
  • [76] Haozhe Zhang, H. Zhang, Long He, L. He, Francesco Di Gioia, F. Di Gioia, Daeun Choi, D. Choi, Antonio Elia, A. Elia, & Paul Heinemann, P. Heinemann. (0000). LoRaWAN based internet of things (IoT) system for precision irrigation in plasticulture fresh-market tomato. Smart agricultural technology, 2, 100053. https://doi.org/10.1016/j.atech.2022.100053.
  • [77] Wu, F.; Wu, T.; Yuce, M.R. An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications. Sensors 2019, 19, 21. https://doi.org/10.3390/s19010021.
  • [78] Liang, R.; Zhao, L.; Wang, P. Performance Evaluations of LoRa Wireless Communication in Building Environments. Sensors 2020, 20, 3828. https://doi.org/10.3390/s20143828 .
  • [79] Pereira, F.; Correia, R.; Pinho, P.; Lopes, S.I.; Carvalho, N.B. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment. Sensors 2020, 20, 6420. https://doi.org/10.3390/s20226420.
  • [80] Minhas, N.; Kumar, Dr. (2018). Performance Analysis of ISM Band Antennas: A Survey. International Journal of Advanced Computer Research.
  • [81] Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 2018, 18, 3995. https://doi.org/10.3390/s18113995.
  • [82] The ThingNetwork website. Available online: https://www.thethingsnetwork.org/docs/quick-start (accessed on 10.10.2022).
  • [83] The ThingStack website. Available online: https://www.thethingsindustries.com/docs/ (accessed on 10.10.2022).
  • [84] Thingspeak website. Available online: https://thingspeak.com (accessed on 10.10.2022).
  • [85] OpenStack website. Available online: https://www.openstack.org/community/ (accessed on 10.10.2022).
  • [86] Chirpstack website. Available online: https://www.chirpstack.io (accessed on 10.10.2022).
  • [87] TheThings.io website. Available online: https://thethings.io (accessed on 10.10.2022).
  • [88] Lorank Gateway User's Guide 8. https://github.com/Ideetron/Larank/blob/master/lorank8v1/manual.pdf ((accessed on 10.10.2022). RFM95W radio module documentation. https://www.hoperf.com/modules/lora/RFM95.html (accessed on 10.10.2022).
  • [89] A guide to interfacing an Arduino and RFM95W-based terminal device with a TTN. https://www.mobilefish.com/developer/lorawan/lorawan_quickguide_build_lora_node_rfm95_arduino_uno.html (accessed on 10.10.2022).
  • [90] Arduino IoT Cloud documentation. Available online: https://docs.arduino.cc/cloud/iot- cloud/tutorials/cloud-lora-getting-started (accessed on 10.10.2022).
  • [91] Peruzzi, G.; Pozzebon, A. A Review of Energy Harvesting Techniques for Low Power Wide Area Networks (LPWANs). Energies 2020, 13, 3433. https://doi.org/10.3390/en13133433.
  • [92] Polonelli, T.; Brunelli, D.; Marzocchi, A.; Benini, L. Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment. Sensors 2019, 19, 838. https://doi.org/10.3390/s19040838.
  • [93] Bouguera, T.; Diouris, J.-F.; Chaillout, J.-J.; Jaouadi, R.; Andrieux, G. Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN. Sensors 2018, 18, 2104. https://doi.org/10.3390/s18072104.
  • [94] Almuhaya, M.A.M.; Jabbar, W.A.; Sulaiman, N.; Abdulmalek, S. A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions. Electronics 2022, 11, 164. https://doi.org/10.3390/electronics11010164.
  • [95] Ismail, D., Rahman, M., & Saifullah, A. (2018). Low-power wide-area networks: opportunities, challenges, and directions. Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking.
  • [96] TTN Mapper. Available online: https://ttnmapper.org/heatmap/ (accessed on 10.10.2022).
  • [97] Amsterdam Smart City. Available online: https://amsterdamsmartcity.com/about (accessed on 10.10.2022).
  • [98] Gassara Mouna & Elleuchi Manel, Abid Mohamed. 2021. “Cloud-based platforms for LoRa internet of things: a survey”. International Journal of Informatics and Communication Technology (IJ-ICT). 10. 54. https://doi.org/10.11591/ijict.v10i1.pp54-64.
  • [99] So Jaeyoung, Kim Daehwan, Kim Hongseok, Lee Hyunseok, Park Suwon. 2016. "LoRaCloud: LoRa platform on OpenStack". IEEE NetSoft Conference and Workshops (NetSoft), pp. 431-434.
  • [100] LMiC Bilblioteka. https://github.com/mcci-catena/arduino-lmic (accessed on 10.10.2022).
  • [101] OTAA and ABP activation - differences. https://www.thethingsindustries.com/docs/devices/abp-vs-otaa/ 3 (dostęp 20.04.2022).
  • [102] Aras, E., Ramachandran, G.S., Lawrence, P.W., & Hughes, D. (2017). Exploring the Security Vulnerabilities of LoRa. 2017 3rd IEEE International Conference on Cybernetics (CYBCON), 1-6.
  • [103] Torres, N.; Pinto, P.; Lopes, S.I. Security Vulnerabilities in LPWANs - An Attack Vector Analysis for the IoT Ecosystem. Appl. Sci. 2021, 11, 3176. https://doi.org/10.3390/app11073176.
  • [104] Kufakunesu, R.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges. Sensors 2020, 20, 5044. https://doi.org/10.3390/s20185044.
  • [105] Basu, D., Gu, T., & Mohapatra, P. (2020). Security Issues of Low Power Wide Area Networks in the Context of LoRa Networks. ArXiv, abs/2006.16554.
  • [106] Weinand A.; de la Fuente A. G.; Lipps C.; Karrenbauer M. Physical Layer Security based Key Management for LoRaWAN, in the 2020 Workshop on Next Generation Networks and Applications (NGNA), Kaiserslautern, Germany, December 2020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0e4fc82-0b1d-4ccb-8c2e-25aea9569117
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.