PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic assessment of thermochemical cycle for hydrogen production based on water decomposition with binary copper chlorine couple

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study aims at investigating and simulating the hydrogen cycle production at low temperatures using thermochemical reactions. The cycle used in this work is based on the dissociation of water molecules depending on a copper chlorine couple. Furthermore, the proposed method uses mainly thermal energy provided by a solar thermal field. This proposed cycle differs from what is found in the literature. However, most of the thermochemical cycles for hydrogen production work at quite high temperatures which is a technical challenge. Therefore, the maximum temperature used in the present cycle is limited to 500◦C. A thermodynamic analysis based on both the first and second laws is performed to evaluate the energy, exergy and efficiency of each reaction as well as the overall exergetic efficiency of the system. Furthermore, a parametric study is conducted to figure out the impact of the surrounding temperatures on the overall exergetic efficiency using commercial energy simulation software. The results show that the cycle can achieve an exergy efficiency of 30.5%.
Rocznik
Strony
109--133
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Laboratory of Mechanics, Amar Telidji University of Laghouat, B.P. 37G Laghouat 03000, Algeria
  • Laboratory of Mechanics, Amar Telidji University of Laghouat, B.P. 37G Laghouat 03000, Algeria
  • Laboratory of Mechanics, Amar Telidji University of Laghouat, B.P. 37G Laghouat 03000, Algeria
  • University of Campinas, Sao Paulo 13083-970, Brazil
Bibliografia
  • [1] Safari F., Dincer I.: A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energ. Convers. Manage. 205(2019),112182.
  • [2] Balta M.T.: Thermodynamic performance assessment of boron based thermochemical water splitting cycle for renewable hydrogen production. Int. J. Hydrogen Energ.45(2020), 60, 34579–34586.
  • [3] Rosen M.A.: Advances in hydrogen production by thermochemical water decomposition: A review. Energy 35(2010), 2, 1068–1076.
  • [4] Dincer I.: Green methods for hydrogen production. Int. J. Hydrogen Energ.37(2012), 2, 1954–1971.
  • [5] Sattler C., Roeb M., Agrafiotis C., Thomey D.: Solar hydrogen production via sulphur based thermochemical water-splitting. Sol. Energy 156(2017), 30–47.
  • [6] Pregger T., Graf D., Krewitt W., Sattler C., Roeb M., Möller S.: Prospects of solar thermal hydrogen production processes. Int. J. Hydrogen Energ. 34(2009), 10, 4256–4267.
  • [7] Razi F., Dincer I., Gabriel K.: Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production. Energy 205(2020),117985.
  • [8] Mao Y., et al.: Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review. Appl. Energ. 267(2020), 0360–0377.
  • [9] Farsi A., Dincer I., Naterer G.F.: Multi-objective optimization of an experimental integrated thermochemical cycle of hydrogen production with an artificial neural network. Int. J. Hydrogen Energ. 45(2020), 46, 24355–24369.
  • [10] Bensenouci A., Medjelled A.: Thermodynamic and efficiency analysis of solar steam power plant cycle. Int. J. Renew. Energ. Res. 6(2016), 4, 1556–1564.
  • [11] Naghavi S.S., He J., Wolverton C.: CeTi2O6 – A promising oxide for solar thermochemical hydrogen production. ACS Appl. Mater. Interface. 12(2020), 19, 21521–21527.
  • [12] Hoskins A.L., et al.: Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle. Appl. Energ. 249(2019), 368–376.
  • [13] Dhif K., Mebarek-Oudina F., Chouf S., Vaidya H., Chamkha A.J.: Thermal analysis of the solar collector cum storage system using a hybrid-nanofluids. J. Nanofluids 10(2021), 4, 616–626.
  • [14] Ju L.C.: Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle. Nucl. Eng. Technol. 53(2021), 2066–2073.
  • [15] Yildiz B., Kazimi M.S.: Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int. J. Hydrogen Energ. 31(2006), 77–92.
  • [16] Dou B., Zhang H., Song Y., Zhao L., Jiang B., He M.: Sustainable energy & fuels hydrogen production from the thermochemical conversion of biomass. Sustain. Energ. Fuels 3(2019), 2, 314–342.
  • [17] Ghazvini M., Sadeghzadeh M., Hossein M.: Geothermal energy use in hydrogen production: A review. Int. J. Energ. Res. 10(2019), 1–29.
  • [18] Temiz M., Dincer I.: Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems. Energy 219(2021),119554.
  • [19] Cui B., Zhang J., Liu S., Liu X., Zhang Z., Sun J.: A low-temperature electrothermochemical water-splitting cycle for hydrogen production based on LiFeO2/Feredox pair. Int. J. Hydrogen Energ. 45(2020), 41, 20800–20807.
  • [20] Qian X., et al.: Article outstanding properties and performance of CaTi0.5Mn0.5O3 for solar-driven thermochemical hydrogen production. Matter 4(2021), 2, 688–708.
  • [21] El-Emam R.S., Ozcan H., Zamfirescu C.: Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. J. Clean. Prod. 262(2020),121424.
  • [22] Abanades S., Charvin P., Flamant G., Neveu P.: Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31(2006), 14, 2805–2822.
  • [23] Izanloo M., Mehrpooya M.: Integrated thermochemical Mg-Cl-Na hydrogen production cycle, carbon dioxide capture, ammonia production, and methanation. Int.J. Energ. Res. 10(2021), 1–19.
  • [24] Safari F., Dincer I.: A study on the Fe–Cl thermochemical water splitting cycle for hydrogen production. Int. J. Hydrogen Energ. 45(2020), 38, 18867–18875.
  • [25] Huang I., Zhang Y., Arafa M.: High performance dual-electrolyte magnesium-iodine batteries that can harmlessly resorb in the environment or in the body. Energ.Environ. Sci. 15(2022), 10, 4095–4108.
  • [26] Balta M.T., Dincer I., Hepbasli A.: ScienceDirect Comparative assessment of various chlorine family thermochemical cycles for hydrogen production. Int. J. Hydrogen Energ. 41(2016), 19, 7802–7813.
  • [27] Naterer G.F., Gabriel K., Wang Z.L., Daggupati V.N., Gravelsins R.: Thermochemical hydrogen production with a copper-chlorine cycle. I: oxygen release from copper oxychloride decomposition. Int. J. Hydrogen Energ. 33(2008) 20, 5439–5450.
  • [28] Orhan M.F., Dincer I., Rosen M.A.: An exergy–cost – energy–mass analysis of a hybrid copper-chlorine thermochemical cycle for hydrogen production. Int. J. Hydrogen Energ. 35(2010), 10, 4831–4838, 2010.
  • [29] Corgnale C., Ma Z., Shimpalee S.: Modeling of a direct solar receiver reactor for decomposition of sulfuric acid in thermochemical hydrogen production cycles. Int. J. Hydrogen Energ. 44(2019), 50, 27237–27247.
  • [30] Farsi A., Dincer I., Naterer G.F.: Second law analysis of CuCl2 hydrolysis reaction in the Cu–Cl thermochemical cycle of hydrogen production. Energy 202(2020),117721.
  • [31] Abdulrahman M.W.: Simulation of materials used in the multiphase oxygen reactor of hydrogen production Cu–Cl cycle. In: Proc. 6th Int. Conf. on Fluid Flow, Heat Mass Transf., FFHMT 123(2019) 1–7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0e2f692-3783-4300-9c10-e9de927812ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.