PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ciecze jonowe oraz potencjalne obszary ich zastosowań w przemyśle chemicznym

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Ionic liquids and potential areas of their applications in chemical industry
Języki publikacji
PL
Abstrakty
EN
Ionic liquids (ILs) compose a group of chemical compounds of ionic nature consisting of organic cation and inorganic or organic anion, whose melting point does not exceed 100°C (373,15 K). These compounds play a very important role in scientific investigations as well as in industrial organic synthesis, both in high‑ -tonnage productions as well as low-tonnage technologies of high added-value chemicals and materials. Ionic liquids are mostly used as alternative media and/or catalysts for desired chemical reactions. Multifunctionality and popularity of ionic liquids applications mainly stems from their beneficial physicochemical properties, such as: (i) very low vapor pressure, (ii) negligible viscosity, (iii) high overall- and thermal-stability, (iv) incombustibility and non-explosiveness, (v) high heat capacity, (vi) good solubility of most organic compounds (including polymers) as well as organometallic and inorganic compounds (including gases), (vii) low compressibility, and (viii) high electrochemical conductivity. Moreover, ionic liquids (x) exist in liquid state in a very wide range of temperature, (xi) exhibit a wide range of electrochemical stability as well as (xii) improve properties of enzymes and other biocatalysts, positively impacting on their activity, stability, enantioselectivity and/or stereoselectivity. It is worth noting that ionic liquids increasingly constitute a target products of defined commercial characteristics, such in the case of: electrochemicals, chemo-therapeutics, environmental anti-degradation agents, effective and safe agrochemicals etc. In this review, with 238 refs., development trends and potential applications of ionic liquids is presented.
Rocznik
Strony
271--296
Opis fizyczny
Bibliogr. 238 poz., schem.
Twórcy
  • Politechnika Warszawska, Wydział Chemiczny, Instytut Biotechnologii ul. Noakowskiego 3, 00-664 Warszawa
autor
  • Politechnika Warszawska, Wydział Chemiczny, Instytut Biotechnologii ul. Noakowskiego 3, 00-664 Warszawa
  • Politechnika Warszawska, Wydział Chemiczny, Instytut Biotechnologii ul. Noakowskiego 3, 00-664 Warszawa
Bibliografia
  • [1] Ionic Liquids in Synthesis, P. Wasserscheid, T. Welton, (Red.), Wiley-VCH, Nowy Jork 2003.
  • [2] N. Jain, A. Kumar, S. Chauhan, S.M.S. Chauhan, Tetrahedron, 2005, 61, 1015.
  • [3] Ionic Liquids – New Aspects for the Future, J.-I. Kadokawa, (Red.), InTech, Rijeka, Chorwacja 2013, doi: 10.5772/45605.
  • [4] Applications of Ionic Liquids in Science and Technology, S. Handy (Red.), InTech; Rijeka, Chorwacja 2011, doi: 10.5772/1769.
  • [5] Ionic Liquids: Applications and Perspectives, A. Kokorin (Red.), InTech, Rijeka, Chorwacja 2011, doi: 10.5772/1782.
  • [6] R. Ratti, Adv. Chem., 2014, 2014, 1.
  • [7] J.P. Hallett, T. Welton, Chem. Rev., 2011, 111, 3508.
  • [8] H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. A: General, 2010, 373, 1.
  • [9] M.A.P. Martins, C.P. Frizzo, D.N. Moreira, N. Zanatta, H.G. Bonacorso, Chem. Rev., 2008, 108, 2015.
  • [10] V.I. Pârvulescu, C.Hardacre, Chem. Rev., 2007, 107, 2615.
  • [11] J. Wilkes, J. Mol. Cat. A: Chem., 2004, 214, 11.
  • [12] D.J. Adams, P.J. Dyson, S.J. Taverne, Chemistry in Alternative Reaction Media, Wiley-VCH, Nowy Jork 2003.
  • [13] D. Zhao, M. Wu, Y. Kou, E. Min, Catal. Today, 2002, 74, 157.
  • [14] R. Sheldon, Chem. Commun., 2001, 2399.
  • [15] J. Dupont, R.F. de Souza, P.A.Z. Suarez, Chem. Rev., 2002, 102, 3667.
  • [16] H. Olivier-Bourbigou, L. Magna, J. Mol. Catal. A: Chem., 2002, 182, 419.
  • [17] C.M. Gordon, Appl. Catal. A, 2001, 222, 101.
  • [18] P. Wassercheid, W. Keim, Angew. Chem. Int. Ed., 2000, 39, 3772.
  • [19] T. Welton, Chem. Rev., 1999, 99, 2071.
  • [20] J.D. Holbrey, K.R. Seddon, Clean Prod. Proc., 1999, 1, 223.
  • [21] Ionic Liquids in Biotransformations and Organocatalysis, P.D. de Maria (Red.), John Wiley & Sons, Hoboken 2012.
  • [22] N. Galonde, K. Nott, A. Debuigne, M. Deleu, C. Jerôme, M. Paquot, J.-P. Wathelet, J. Chem. Technol. Biotechnol., 2012, 87, 451.
  • [23] F.J. Hernández-Fernández, A.P. de los Ríos, L.J. Lozano-Blanco, C. Godínez, J. Chem. Technol. Biotechnol., 2010, 85, 1423.
  • [24] R. Bogel-Łukasik, N.M.T. Lourenço, P. Vidinha, M.D.R.G. da Silva, C.A.M. Afonso, M.N. da Ponte, S. Barreiros, Green Chem., 2008, 10, 243.
  • [25] P. Dominguez de Maria, Angew. Chem. Int. Ed. Engl., 2008, 47, 6960.
  • [26] F. van Rantwijk, R.A. Sheldon, Chem. Rev., 2007, 107, 2757.
  • [27] R. Taniki, N. Kenmochi, K. Matsumoto, R. Hagiwara, J. Fluorine Chem., 2013, 149, 112.
  • [28] V. Govinda, P. Attri, P. Venkatesu, P. Venkateswarlu, J. Phys. Chem. B, 2013, 117, 12535.
  • [29] Ionic Liquids: Theory, Properties, New Approaches, A. Kokorin (Red.), InTech, Rijeka, Chorwacja 2011, doi: 10.5772/603.
  • [30] Ionic Liquids – Classes and Properties, S. Handy (Red.), InTech, Rijeka, Chorwacja 2011, doi:10.5772/853.
  • [31] T.L. Greaves, C.J. Drummond, Chem. Rev., 2007, 108, 206.
  • [32] F. Endres, S.Z. El Abedin, Phys. Chem. Chem. Phys., 2006, 8, 2101.
  • [33] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Green Chem., 2001, 3, 156.
  • [34] R. Hagiwara, Y. Ito, J. Fluorine Chem., 2000, 105, 221.
  • [35] R. Cabrera-Padilla, M. Lisboa, M. Pereira, R. Figueiredo, E. Franceschi, A. Fricks, Á. Lima, D. Silva, C.F. Soares, Bioproc. Biosyst. Eng., 2015, 38, 805.
  • [36] T.E. Sintra, S.P.M. Ventura, J.A.P. Coutinho, J. Mol. Cat. B: Enzym., 2014, 107, 140.
  • [37] N. Galonde, G. Richard, M. Deleu, K. Nott, C. Jerôme, M.-L. Fauconnier, Biotechnol. Agron. Soc. Environ., 2013, 17, 556.
  • [38] S.P.M. Ventura, L.D.F. Santos, J.A. Saraiva, J.A.P. Coutinho, Green Chem., 2012, 14, 1620.
  • [39] H. Zhao, G.A. Baker, S. Holmes, Org. Biomol. Chem., 2011, 9, 1908.
  • [40] C. Kohlmann, L. Greiner, W. Leitner, C. Wandrey, S. Lütz, Chem. Eur. J., 2009, 15, 11692.
  • [41] X.M. Wu, J.Y. Xin, W. Sun, C.G. Xia, Chem. Biodivers., 2007, 4, 183.
  • [42] S. Park, R.J. Kazlauskas, Curr. Opin. Biotechnol., 2003, 14, 432.
  • [43] J.L. Kaar, A.M. Jesionowski, J.A. Berberich, R. Moulton, A.J. Russell, J. Am. Chem. Soc., 2003, 125, 4125.
  • [44] F. Pter, C. Paul, A. Ursoiu, Applications of Ionic Liquids to Increase the Efficiency of Lipase Biocatalysis, InTech, Rijeka, Chorwacja 2011, doi: 10.5772/15331.
  • [45] A.F.M. Claudio, C.F.C. Marques, I. Boal-Palheiros, M.G. Freire, J.A.P. Coutinho, Green Chem. 2014, 16, 259.
  • [46] C.M.S.S. Neves, M.G. Freire, J.A.P. Coutinho, RSC Adv., 2012, 2, 10882.
  • [47] Green Industrial Applications of Ionic Liquids, R.D. Rogers, K.R. Seddon, S. Volkov (Red.), Wiley‑-VCH, Nowy Jork 2002, XXIV.
  • [48] L.M.C. Pereira, M.B. Oliveira, F. Llovell, L.F. Vega, J.A.P. Coutinho, J. Supercrit. Fluid., 2014, 92, 231.
  • [49] Z. Lei, C. Dai, Chen, B. Chem. Rev., 2014, 114, 1289.
  • [50] Z.Z. Yang, L.N. He, Beilstein J. Org. Chem., 2014, 10, 1959.
  • [51] P.J. Carvalho, J.A.P. Coutinho, Energ. Environ. Sci., 2011, 4, 4614.
  • [52] J.L. Anthony, E.J. Magnin, J.F. Brennecke, J. Phys. Chem. B., 2002, 106, 7315.
  • [53] S.G. Kazarian, B.J. Briscoe, T. Welton, Chem. Commun., 2000, 2047.
  • [54] L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Nature, 1999, 399, 28.
  • [55] J.H. Santos, F.A. e Silva, S.P.M. Ventura, J.A.P. Coutinho, R.L. de Souza, C.M.F. Soares, Á.S. Lima, Biotechnol. Prog., 2015, 31, 70.
  • [56] F.A. Vicente, L.P. Malpiedi, F.A. e Silva, Jr.A. Pessoa, J.A.P. Coutinho, S.P.M. Ventura, Sep. Purif. Technol., 2014, 135, 259.
  • [57] M.R. Almeida, H. Passos, M.M. Pereira, Á.S. Lima, J.A.P. Coutinho, M.G. Freire, Sep. Purif. Technol., 2014, 128, 1.
  • [58] H. Passos, M.G. Freire, J.A. Coutinho, Green Chem., 2014, 16, 4786.
  • [59] A.P. De Los Rios, F.J.H. Fernandez, Ionic Liquids in Separation Technology, Wyd. 1, Elsevier, 2014.
  • [60] J.F.B. Pereira, S.P.M. Ventura, F.A. e Silva, S. Shahriari, M.G. Freire, J.A.P. Coutinho, Sep. Purif. Technol., 2013, 113, 83.
  • [61] A.F.M. Claudio, A.M. Ferreira, M.G. Freire, J.A.P. Coutinho, Green Chem., 2013, 15, 2002.
  • [62] M. Tian, H. Yan, K.H. Row, Anal. Lett., 2010, 43, 110.
  • [63] D. Han, K.H. Row, Molecules, 2010, 15, 2405.
  • [64] M.G. Freire, C.M.S.S. Neves, I.M. Marrucho, J.N. Canongia Lopes, L.P.N. Rebelo, J.A.P. Coutinho, Green Chem., 2010, 12, 1715.
  • [65] J.F.B. Pereira, A.S. Lima, M.G. Freire, J.A.P. Coutinho, Green Chem., 2010, 12, 1661.
  • [66] X. Han, D.W. Armstrong, Acc. Chem. Res., 2007, 40, 1079.
  • [67] H. Zhao, S. Xia, P. Ma, J. Chem. Technol. Biotechnol., 2005, 80, 1089.
  • [68] A. Bhattacharjee, P.J. Carvalho, J.A.P. Coutinho, Fluid Phase Equilibr., 2014, 375, 80.
  • [69] K.A. Kurnia, T.E. Sintra, C.M.S.S. Neves, K. Shimizu, J.N. Canongia Lopes, F. Goncalves, S.P.M. Ventura, M.G. Freire, L.M.N.B.F. Santos, J.A.P. Coutinho, Phys. Chem. Chem. Phys., 2014, 16, 19952.
  • [70] M.A.R. Martins, C.M.S.S. Neves, K.A. Kurnia, A. Luís, L.M.N.B.F. Santos, M.G. Freire, S.P. Pinho, J.A.P. Coutinho, Fluid Phase Equilibr., 2014, 375, 161.
  • [71] C.M.S.S. Neves, A.R. Rodrigues, K.A. Kurnia, J.M.S.S. Esperança, M.G. Freire, J.A.P. Coutinho, Fluid Phase Equilibr., 2013, 358, 50.
  • [72] J.A.P. Coutinho, P.J. Carvalho, N.M.C. Oliveira, RSC Adv., 2012, 2, 7322.
  • [73] M.G. Freire, L.M.N.B.F. Santos, A.M. Fernandes, J.A.P. Coutinho, I.M. Marrucho, Fluid Phase Equilibr., 2007, 261, 449.
  • [74] J.L. Anthony, E.J. Magnin, J.F. Brennecke, J. Phys. Chem. B., 2001, 105, 10942.
  • [75] C. Chiappe, S. Rajamani, Eur. J. Org. Chem., 2011, 2011, 5517.
  • [76] R. Giernoth, Angew. Chem. Int. Ed. Engl., 2010, 49, 2834.
  • [77] N.V. Plechkova, K.R. Seddon, Chem. Soc. Rev., 2008, 37, 123.
  • [78] M. Freemantle, Chem. Eng. News, 2003, 81, 9.
  • [79] K.R. Seddon, Nat. Mater., 2003, 2, 363.
  • [80] R.D. Rogers, K.R. Seddon, Science, 2003, 302, 792.
  • [81] Z.C. Liu, R. Zhang, C.M. Xu, R.G. Xia, Oil Gas J., 2006, 104, 52.
  • [82] Z. Liu, C. Xu, C. Huang, Method for manufacturing alkylate oil with composite ionic liquid used as catalyst, US Pat., 0133056 (2004).
  • [83] A.P. Sandoval, M.F. Suárez-Herrera, J.M. Feliu Beilstein, J. Org. Chem., 2015, 11, 348.
  • [84] M.J. Marczewski, B. Stanje, I. Hanzu, M. Wilkening, P. Johansson, Phys. Chem. Chem. Phys., 2014, 16, 12341.
  • [85] L. Niedzicki, E. Karpierz, M. Zawadzki, M. Dranka, M. Kasprzyk, A. Zalewska, M. Marcinek, J. Zachara, U. Domańska, W. Wieczorek, Phys. Chem. Chem. Phys., 2014, 16, 11417.
  • [86] M.V. Fedorov, A.A. Kornyshev, Chem. Rev., 2014, 114, 2978.
  • [87] B. Gharib, A. Hirsch, Eur. J. Org. Chem., 2014, 2014, 4123.
  • [88] N. Shirshova, P. Johansson, M.J. Marczewski, E. Kot, D. Ensling, A. Bismarck, J.H.G. Steinke, J. Mater. Chem. A, 2013, 1, 9612.
  • [89] K. Fujita, K. Murata, M. Masuda, N. Nakamura, H. Ohno, RSC Adv., 2012, 2, 4018.
  • [90] J. Scheers, P. Johansson, P. Szczeciński, W. Wieczorek, M. Armand, P. Jacobsson, J. Power Sources, 2010, 195, 6081.
  • [91] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater., 2009, 8, 621.
  • [92] P. Hapiot, C. Lagrost, Chem. Rev., 2008, 108, 2238.
  • [93] J.D. Holbrey, N.V. Plechkova, K.R. Seddon, Green Chem., 2006, 8, 411.
  • [94] S.A. Forsyth, D.R. MacFarlane, J. Mat. Chem., 2003, 13, 2451.
  • [95] M. Smiglak, J.M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D.R. MacFarlane, R.D. Rogers, Chem. Comm., 2014, 50, 9228.
  • [96] D. Freudenmann, S. Wolf, M. Wolff, C. Feldmann, Angew. Chem. Int. Ed., 2011, 50, 11050.
  • [97] Z. Ma, J. Yu, S. Dai, Adv. Mater., 2010, 22, 261.
  • [98] J. Dupont, J.D. Scholten, Chem. Soc. Rev., 2010, 39, 1780.
  • [99] E.R. Parnham, R.E. Morris, Acc. Chem. Res., 2007, 40, 1005.
  • [100] C. Janiak, Metal Nanoparticle Synthesis in Ionic Liquids, Springer, Berlin Heidelberg 2013.
  • [101] K. Richter, P.S. Campbell, T. Baecker, A. Schimitzek, D. Yaprak, A.-V. Mudring, Phys. Status Solidi B, 2013, 250, 1152.
  • [102] B. Rodríguez-Cabo, E. Rodil, H. Rodríguez, A. Soto, A. Arce Angew. Chem. Int. Ed., 2012, 51, 1424.
  • [103] G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. Int. Ed., 2011, 50, 826.
  • [104] J. Dupont, J.D. Scholten, Chem. Soc. Rev., 2010, 39, 1780.
  • [105] T.J.S. Schubert, Nachr. Chem., 2005, 53, 1222.
  • [106] D.N. Moreira, N. Fresno, R. Pérez-Fernández, C.P. Frizzo, P. Goya, C. Marco, M.A.P. Martins, J. Elguero, Tetrahedron, 2015, 71, 676.
  • [107] H.D. Williams, Y. Sahbaz, L. Ford, T.H. Nguyen, P.J. Scammells, C.J. Porter, Chem. Commun., 2014, 50, 1688.
  • [108] I.M. Marrucho, L.C. Branco, L.P. Rebelo, Annu. Rev. Chem. Biomol. Eng., 2014, 5, 527.
  • [109] T. Siódmiak, P.M. Marszałł, A. Proszowska, Mini-Rev. Org. Chem., 2012, 9, 203.
  • [110] R. Ferraz, L.C. Branco, C. Prudencio, J.P. Noronha, Z. Petrovski, ChemMedChem, 2011, 6, 975.
  • [111] B.S. Sekhon, Asian J. Phar. Biol. Res., 2011, 1, 395.
  • [112] Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology, S. Malhotra (Red.), American Chemical Society, 2010.
  • [113] W.L. Hough, M. Smiglak, H. Rodriguez, R.P. Swatloski, S.K. Spear, D.T. Daly, J. Pernak, J.E. Grisel, R.D. Carliss, M.D. Soutullo, J.H. Davis, R.D. Rogers, New J. Chem., 2007, 31, 1429.
  • [114] C.R. Schmid, C.A. Beck, J.S. Cronin, M.A. Staszak, Org. Process Res. Dev., 2004, 8, 670.
  • [115] Rapid Dissolution of Cellulose in Ionic Liquid with Different Methods, [w:] Fundamental Aspects, W. Lan, C.-F. Liu, F.-X. Yue, R.-C. Su (Red.), InTech, Rijeka, Chorwacja 2013, doi: 10.5772/52517.
  • [116] R.C. Remsing, R.P. Swatloski, R.D. Rogers, G. Moyna, Chem. Commun., 2006, 12, 1271.
  • [117] R.P. Swatloski, J.D. Holbrey, J.L. Weston, R.D. Rogers, Chim. Oggi, 2006, 24, 31.
  • [118] J.S. Moulthrop, R.P. Swatloski, G. Moyna, R.D. Rogers, Chem. Commun., 2005, 12, 1557.
  • [119] M.B. Turner, S.K. Spear, J.D. Holbrey, D.T. Daly, R.D. Rogers, Biomacromolecules, 2005, 6, 2497.
  • [120] J.D. Holbrey, R.P. Swatloski, J. Chen, D. Daly, R.D. Rogers, Polymer dissolution and blend formation in ionic liquids, 2005, World Pat., WO 2005 098546.
  • [121] M.B. Turner, S.K. Spear, J.D. Holbrey, R.D. Rogers, Biomacromolecules, 2004, 5, 1379.
  • [122] R.D. Rogers, Green Chem., 2004, 6, G17.
  • [123] M. Maase, V. Stegmann, Solubility of cellulose in ionic liquids with addition of amino bases, 2006 World Pat., WO 2006 108861.
  • [124] R.P. Swatloski, R.D. Rogers, J.D. Holbrey, Dissolution and processing of cellulose using ionic liquids, cellulose solution, and regenerating cellulose, 2003, World Pat., WO 2003 029329.
  • [125] M.B. Turner, S.K. Spear, J.G. Huddleston, J.D. Holbrey R.D. Rogers, Green Chem., 2003, 5, 443.
  • [126] R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, J. Am. Chem. Soc., 2002, 124, 4974.
  • [127] R.P. Swatloski, J.D. Holbrey, S.K. Spear, R.D. Rogers, Proc.-Electrochem. Soc., 2002, 19, 155.
  • [128] J. Nowicki, M. Muszynski, Curr. Org. Chem., 2014, 18, 2797.
  • [129] C.-Z. Liu, F. Wang, A.R. Stiles, C. Guo, Appl. Energy, 2012, 92, 406.
  • [130] B. Weyershausen, K. Lehmann, Green Chem., 2005, 7, 15.
  • [131] A. Hoff, C. Jost, A. Prodi-Schwab, F.G. Schmidt, B. Weyershausen, Degussa Science Newsletter, 2004, 9, 10.
  • [132] J. Le Bideau, L. Viau, A. Vioux, Chem. Soc. Rev., 2011, 40, 907.
  • [133] T. Torimoto, T. Tsuda, K. Okazaki, S. Kuwabata, Adv. Mater., 2010, 22, 1196.
  • [134] Y. Yoshida, G. Saito, Phys. Chem. Chem. Phys., 2010, 12, 1675.
  • [135] K.M. Wiggins, R.L. Kerr, Z. Chen, C.W. Bielawski, J. Mater. Chem., 2010, 20, 5709.
  • [136] M.-D. Bermúdez, A.E. Jiménez, J. Sanes, F.J. Carrión, Molecules, 2009, 14, 2888.
  • [137] F. Zhou, Y. Liang, W. Liu, Chem. Soc. Rev., 2009, 38, 2590.
  • [138] B. Mallick, B. Balke, C. Felser, A.V. Mudring, Angew. Chem. Int. Ed., 2008, 47, 7635.
  • [139] A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis, R.D. Rogers, Environ. Sci. Technol., 2002, 36, 2523.
  • [140] K. Nakashima, F. Kubota, T. Maruyama, M. Goto, Ind. Eng. Chem. Res., 2005, 44, 4368.
  • [141] Y.A. Beste, M. Eggersmann, H. Schoenmakers, Chem. Ing. Tech., 2005, 77, 1800.
  • [142] W. Arlt, M. Seiler, C. Jork, T. Schneider, Ionic liquids as selective additives for the separation of close--boiling or azeotropic mixtures, World Pat., WO 2002 074718 (2002).
  • [143] A. Dahi, K. Fatyeyeva, D. Langevin, C. Chappey, S.P. Rogalsky, O.P. Tarasyuk, A. Benamor, S.J. Marais, Membrane Sci., 2014, 458, 164.
  • [144] K. Zhang, X. Feng, X. Sui, M.A. Hempenius, G.J. Vancso, Angew. Chem. Int. Ed. Engl., 2014, 53, 13789.
  • [145] P.S. Kulkarni, C.A.M. Afonso, Green Chem., 2010, 12, 1139.
  • [146] J.F. Wishart, Energy Environ. Sci., 2009, 2, 956.
  • [147] Q. Zhang, J.M. Shreeve, Chem. Rev., 2014, 114, 10527.
  • [148] R. Martínez-Palou, R. Luque, Energ. Environ. Sci., 2014, 7, 2414.
  • [149] S.A. Dharaskar Res. J. Chem. Sci., 2012, 8, 80.
  • [150] U. Domańska, K. Walczak, M. Królikowski, J. Chem. Thermodyn., 2014, 77, 40.
  • [151] U. Domańska, M. Wlazło, Fuel, 2014, 134, 114.
  • [152] M. Wlazło, D. Ramjugernath, P. Naidoo, U. Domańska, J. Chem. Thermodyn., 2014, 72, 31.
  • [153] U. Domańska, E.V. Lukoshko, M. Królikowski, J. Chem. Thermodyn., 2013, 61, 126.
  • [154] U. Domańska, K. Walczak, M. Zawadzki, J. Chem. Thermodyn., 2014, 69, 27.
  • [155] M. Królikowski, K. Walczak, U. Domańska, J. Chem. Thermodyn., 2013, 65, 168.
  • [156] Chiral Separation Methods for Pharmaceutical and Biotechnological Products, S. Ahuja (Red.), Wiley-VCH, Nowy Jork 2010.
  • [157] C.D. Tran, I. Mejac, J. Chromatogr. A, 2008, 1204, 204.
  • [158] J.P. Hallett, T. Welton, Chem. Rev., 2011, 111, 3508.
  • [159] J.W. Lee, J.Y. Shin, Y.S. Chun, H.B. Jang, C.E. Song, S. Lee, Acc. Chem. Res., 2010, 43, 985.
  • [160] Z.-L. Shen, W.-J. Zhou, Y.-T. Liu, S.-J. Ji, T.-P. Loh, Green Chem., 2008, 10, 283.
  • [161] W. Zhou, L.-W. Xu, H.-Y. Qiu, G.-Q. Lai, C.-G. Xia, J.-X. Jiang, Helv. Chim. Acta, 2008, 91, 53.
  • [162] B. Ni, Q. Zhang, A. D. Headley, Tetrahedron Lett., 2008, 49, 1249.
  • [163] B. Ni, Q. Zhang, A. D. Headley, Green Chem., 2007, 9, 737.
  • [164] P.S. Schulz, N. Müller, A. Bösmann, P. Wasserscheid, Angew. Chem. Int. Ed., 2007, 46, 1293.
  • [165] R. Gausepohl, P. Buskens, J. Kleinen, A. Bruckmann, C.W. Lehmann, J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed., 2006, 45, 3689.
  • [166 ] S. Luo, X. Mi, L. Zhang, Angew. Chem., 2006, 118, 3165.
  • [167] Z. Wang, Q. Wang, Y. Zhang, W. Bao, Tetrahedron Lett., 2005, 46, 4657.
  • [168] C. Baudequin, D. Brégeon, J. Levillain, F. Guillen, J.-C. Plaquevent, A.-C. Gaumont, Tetrahedron: Asymmetry, 2005, 16, 3921.
  • [169] B. Pégot, G. Vo-Thanh, D. Gori, A. Loupy, Tetrahedron Letters, 2004, 45, 6425.
  • [170] H.-P. Zhu, F. Yang, J. Tang, Green Chem., 2003, 5, 38.
  • [171] T. Biedroń, P.J. Kubisa, Polym. Sci., Part A: Polym. Chem., 2005, 43, 3454.
  • [172] H.-Y. Ma, X.-H. Wan, X.-F. Chen, Zhou, Q. F. Chin. J. Polym. Sci., 2003, 21, 265.
  • [173] T. Biedroń, P. Kubisa, Polym. Int., 2003, 52, 1584.
  • [174] J. Ding, V. Desikan, X. Han, T.L. Xiao, R. Ding, W.S. Jenks, D.W. Armstrong, Org. Lett., 2005, 7, 335.
  • [175] M.D. Joshi, J.L. Anderson, RSC Adv., 2012, 2, 5470.
  • [176] J. Ding, T. Welton, D.W. Armstrong, Anal. Chem., 2004, 76, 6819.
  • [177] D.K. Bwambok, H.M. Marwani, V.E. Fernand, S.O. Fakayode, M. Lowry, I. Negulescu, R.M. Strongin, I.M. Warner, Chirality, 2008, 20, 151.
  • [178] S. Yu, S. Lindeman, C.D. Tran, J. Org. Chem., 2008, 73, 2576.
  • [179] H. Clavier, L. Boulanger, N. Audic, L. Toupet, M. Mauduit, J.-C. Guillemin, Chem. Commun., 2004, 10, 1224.
  • [180] Y. Ishida, D. Sasaki, H. Miyauchi, K. Saigo, Tetrahedron Lett., 2004, 45, 9455.
  • [181] J. Levillain, G. Dubant, I. Abrunhosa, M. Gulea, A.-C. Gaumont, Chem. Commun., 2003, 23, 2914.
  • [182] P. Wasserscheid, A. Bosmann, C. Bolm, Chem. Commun., 2002, 3, 200.
  • [183] Y. Ishida, H. Miyauchi, K. Saigo, Chem. Commun., 2002, 19, 2240.
  • [184] K.V. Axenov, S. Laschat, Materials, 2011, 4, 206.
  • [185] K. Binnemans, Chem. Rev., 2005, 105, 4148.
  • [186] J. Baudoux, P. Judeinstein, D. Cahard, J.-C. Plaquevent, Tetrahedron Lett., 2005, 46, 1137.
  • [187] M. Yoshio, T. Mukai, H. Ohno, T. Kato, J. Am. Chem. Soc., 2004, 126, 994.
  • [188] M. Tosoni, S. Laschat, A. Baro, Helv. Chim. Acta, 2004, 87, 2742.
  • [189] C. Tschierske, Angew. Chem. Int. Ed., 2013, 52, 8828.
  • [190] S. Hernández-Ainsa, J. Barberá, M. Marcos, J.L. Serrano, Chem. Mater., 2010, 22, 4762.
  • [191] T. Kato, N. Mizoshita, K. Kishimoto, Angew. Chem. Int. Ed., 2006, 45, 38.
  • [192] J. Pernak, N. Borucka, F. Walkiewicz, B. Markiewicz, P. Fochtman, S. Stolte, S. Steudte, P. Stepnowski, Green Chem., 2011, 13, 2901.
  • [193] Y. Yu, J. Environ. Prot., 2011, 02, 298.
  • [194] D.J. Couling, R.J. Bernot, K.M. Docherty, J.K. Dixon, E.J. Maginn, Green Chem., 2006, 8, 82.
  • [195] J. Pernak, I. Goc, I. Mirska, Green Chem., 2004, 6, 323.
  • [196] J. Pernak, K. Sobaszkiewicz, I. Mirska, Green Chem., 2003, 5, 52.
  • [197] M. Petkovic, J.L. Ferguson, H.Q.N. Gunaratne, R. Ferreira, M.C. Leitao, K.R. Seddon, L.P.N. Rebelo, C.S. Pereira, Green Chem., 2010, 12, 643.
  • [198] D. Coleman, N. Gathergood, Chem. Soc. Rev., 2010, 39, 600.
  • [199] A. Romero, A. Santos, J. Tojo, A. Rodriguez, J. Hazard. Mater., 2008, 151, 268.
  • [200] A. Paterno, F. D’Anna, G. Musumarra, R. Noto, S. Scire, RSC Adv., 2014, 4, 23985.
  • [201] J. Ranke, S. Stolte, R. Stormann, J. Arning, B. Jastorff, Chem. Rev., 2007, 107, 2183.
  • [202] R.F.M. Elshaarawy, C. Janiak, Tetrahedron, 2014, 70, 8023.
  • [203] M. Messali, Z. Moussa, A.Y. Alzahrani, M.Y. El-Naggar, A.S. El-Douhaibi, Z.M. Judeh, B. Hammouti, Chemosphere, 2013, 91, 1627.
  • [204] J. Feder-Kubis, K. Tomczuk, Tetrahedron, 2013, 69, 4190.
  • [205] N. Ferlin, M. Courty, A.N. Van Nhien, S. Gatard, M. Pour, B. Quilty, M. Ghavre, A. Haiß, K. Kümmerer, N. Gathergood, S. Bouquillon, RSC Adv., 2013, 3, 26241.
  • [206] B.F. Gilmore, G.P. Andrews, G. Borberly, M.J. Earle, M.A. Gilea, S.P. Gorman, A.F. Lowry, M. McLaughlin, K.R. Seddon, New J. Chem., 2013, 37, 873.
  • [207] R.G. Gore, T.-K.-T. Truong, M. Pour, L. Myles, S.J. Connon, N. Gathergood, Green Chem., 2013, 15, 2727.
  • [208] P. Borowiecki, M. Milner-Krawczyk, J. Plenkiewicz, Beilstein J. Org. Chem., 2013, 9, 516.
  • [209] P. Borowiecki, M. Milner-Krawczyk, D. Brzezińska, M. Wielechowska, J. Plenkiewicz, Eur. J. Org. Chem., 2013, 4, 712.
  • [210] R.T.W. Huang, K.C. Peng, H.N. Shih, G.H. Lin, T.F. Chang, S.J. Hsu, T.S.T. Hsu, I.J.B. Lin, Soft Matter, 2011, 7, 8392.
  • [211] E.E. Alberto, L.L. Rossato, S.H. Alves, D. Alves, A.L. Braga, Org. Biomol. Chem., 2011, 9, 1001.
  • [212] B.F. Gilmore, Antimicrobial Ionic Liquids, [w:] Ionic Liquids: Applications and Perspectives, A. Kokorin (Red.)], InTech, Rijeka, Chorwacja 2011, doi: 10.5772/13861.
  • [213] J. Cybulski, A. Wiśniewska, A. Kulig-Adamiak, Z. Dąbrowski, T. Praczyk, A. Michalczyk, F. Walkiewicz, K. Materna, J. Pernak, Tetrahedron Lett., 2011, 52, 1325.
  • [214] K.M. Docherty, J.C.F. Kulpa, Green Chem., 2005, 7, 185.
  • [215] D. Coleman, M. Špulák, M.T. Garcia, N. Gathergood, Green Chem., 2012, 14, 1350.
  • [216] H. Hajfarajollah, B. Mokhtarani, K.A. Noghabi, A. Sharifi, M. Mirzaei, RSC Adv., 2014, 4, 42751.
  • [217] J. Feder-Kubis, M. Kubicki, J. Pernak, Tetrahedron: Asymm., 2010, 21, 2709.
  • [218] A. Cieniecka-Rosłonkiewicz, J. Pernak, J. Kubis-Feder, A. Ramani, A.J. Robertson, K.R. Seddon, Green Chem., 2005, 7, 855.
  • [219] A. Busetti, D.E. Crawford, M.J. Earle, M.A. Gilea, B.F. Gilmore, S.P. Gorman, G. Laverty, A.F. Lowry, M. McLaughlin, K.R. Seddon, Green Chem., 2010, 12, 420.
  • [220] L. Carson, P.K.W. Chau, M.J. Earle, M.A. Gilea, B.F. Gilmore, S.P. Gorman, M.T. McCann, K.R. Seddon, Green Chem., 2009, 11, 492.
  • [221] S.Y. Choi, H. Rodríguez, H.Q.N. Gunaratne, A.V. Puga, D. Gilpin, S. McGrath, J.S. Vyle, M.M. Tunney, R.D. Rogers, T. McNally, RSC Adv., 2014, 4, 8567.
  • [222] S.N. Riduan, Y. Zhang, Chem. Soc. Rev., 2013, 42, 9055.
  • [223] J. Pernak, A. Syguda, I. Mirska, A. Pernak, J. Nawrot, A. Pradzynska, S.T. Griffin, R.D. Rogers, Chem. Eur. J., 2007, 13, 6817.
  • [224] J. Pernak, M. Niemczak, K. Materna, K. Marcinkowska, T. Praczyk, Tetrahedron, 2013, 69, 4665.
  • [225] J. Pernak, A. Syguda, K. Materna, E. Janus, P. Kardasz, T. Praczyk, Tetrahedron, 2012, 68, 4267.
  • [226] O.A. Cojocaru, J.L. Shamshina, G. Gurau, A. Syguda, T. Praczyk, J. Pernak, R.D. Rogers, Green Chem., 2013, 15, 2110.
  • [227] J.T. Polit, T. Praczyk, J. Pernak, Ł. Sobiech, E. Jakubiak, G. Skrzypczak, Acta Physiol. Plant., 2014, 36, 699.
  • [228] R. Kordala-Markiewicz, H. Rodak, B. Markiewicz, F. Walkiewicz, A. Sznajdrowska, K. Materna, K. Marcinkowska, T. Praczyk, J. Pernak, Tetrahedron, 2014, 70, 4784.
  • [229] J. Pernak, M. Niemczak, K. Zakrocka, T. Praczyk, Tetrahedron, 2013, 69, 8132.
  • [230] J. Pernak, A. Syguda, D. Janiszewska, K. Materna, T. Praczyk, Tetrahedron, 2011, 67, 4838.
  • [231] J. Pernak, B. Markiewicz, A. Zgoła-Grześkowiak, Ł. Chrzanowski, R. Gwiazdowski, K. Marcinkowska, T. Praczyk, RSC Adv., 2014, 4, 39751.
  • [232] M. Niemczak, R. Giszter, K. Czerniak, K. Marcinkowska, F. Walkiewicz, RSC Adv., 2015, 5, 15487.
  • [233] J. Pernak, M. Niemczak, R. Giszter, J.L. Shamshina, G. Gurau, O.A. Cojocaru, T. Praczyk, K. Marcinkowska, R.D. Rogers, ACS Sustainable Chem. Eng., 2014, 2, 2845.
  • [234] B. Markiewicz, A. Sznajdrowska, Ł. Chrzanowski, Ł. Ławniczak, A. Zgoła-Grześkowiak, K. Kubiak, J. Nawrot, J. Pernak, New J. Chem., 2014, 38, 3146.
  • [235] J. Pernak, J. Nawrot, M. Kot, B. Markiewicz, M. Niemczak, RSC Adv., 2013, 3, 25019.
  • [236] W.L. Hough-Troutman, M. Smiglak, S. Griffin, W.M. Reichert, I. Mirska, J. Jodynis-Liebert, T. Adamska, J. Nawrot, M. Stasiewicz, R.D. Rogers, J. Pernak, New J. Chem., 2009, 33, 26.
  • [237] S. Paţachia, C. Friedrich, C. Florea, C. Croitoru, Express Polym. Lett., 2011, 5, 197.
  • [238] S. Han, J. Li, S. Zhu, R. Chen, Y. Wu, X. Zhang, Z. Yu, BioResources, 2009, 2, 825.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0e2a0d1-24c8-4b22-8bb8-8bebab875aa2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.