PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspectives of brain imaging with PET systems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this partial review and partial attempt at vision of what may be the future of dedicated brain PET scanners, the key implementations of the PET technique, we postulate that we are still on a development path and there is still a lot to be done in order to develop optimal brain imagers. Optimized for particular imaging tasks and protocols, and also mobile, that can be used outside the PET center, in addition to the expected improvements in sensitivity and resolution. For this multi-application concept to be more practical, flexible, adaptable designs are preferred. This task is greatly facilitated by the improved TOF performance that allows for more open, adjustable, limited angular coverage geometries without creating image artifacts. As achieving uniform very high resolution in the whole body is not practical due to technological limits and high costs, hybrid systems using a moderate-resolution total body scanner (such as J-PET) combined with a very high performing brain imager could be a very attractive approach. As well, as using magnification inserts in the total body or long-axial length imagers to visualize selected targets with higher resolution. In addition, multigamma imagers combining PET with Compton imaging should be developed to enable multitracer imaging.
Rocznik
Strony
269--291
Opis fizyczny
Bibliogr. 138 poz., rys.
Twórcy
  • Department of Biomedical Engineering, University of California, Davis, CA, USA
Bibliografia
  • 1. Wahl RL. Principles and practice of PET and PET/CT, 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.
  • 2. Lewellen TK. Recent developments in PET detector technology. Phys Med Biol 2008;53:R287-317.
  • 3. Lewellen TK. The challenge of detector designs for PET. AJR 2010; 195:301-9.
  • 4. Peng H, Levin CS. Recent developments in PET instrumentation. Curr Pharmaceut Biotechnol 2010;11:555-71.
  • 5. Lee JS. Technical advances in current PET and hybrid imaging systems. Open Nucl Med J 2010;2:192-208.
  • 6. Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng 2015:385-414. https://doi.org/10.1146/annurev-bioeng-071114-040723.
  • 7. Guerra D, Belcari N, Bisogni M. Positron emission tomography: its 65 years. Riv Nuovo Cimento 2016;39. https://doi.org/10.1393/ncr/i2016-10122-6.
  • 8. Walrand S, Hesse M, Jamar F. Update on novel trends in PET/CT technology and its clinical applications. Br J Radiol 2016;89.
  • 9. Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imag 2017;4. https://doi.org/10.1117/1.JMI.4.1.011013.
  • 10. Berg E, Cherry SR. Innovations in instrumentation for positron emission tomography. Semin Nucl Med 2018;48:311-31.
  • 11. Been Han Y, Gyu Kang H, Hyun Song S, Bae Ko G, Sung Lee J, Jong Hong S. SiPM-based dual-ended-readout DOI-TOF PET module based on mean-time method. J Instrum 2019;14. https://doi.org/10.1088/1748-0221/14/02/p02023.
  • 12. Surti S. Update on time-of-flight PET imaging. J Nucl Med 2015; 56:98-105.
  • 13. Surti S, Karp JS. Advances in time-of-flight PET. Phys Med 2016; 32:12-22.
  • 14. Cates JW, Levin CS. Advances in coincidence time resolution for PET. Phys Med Biol 2016;61:2255.
  • 15. Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys 2016;3:3.
  • 16. Seifert S, Schaart DR. Improving the time resolution of TOF-PET detectors by double-sided readout. IEEE Trans Nucl Sci 2015;62: 3-11.
  • 17. Kwon SI, Roncali E, Gola A, Paternoster G, Piemonte C, Cherry SR. Dual-ended readout of bismuth germanate to improve timing resolution in time-of-flight PET. Phys Med Biol 2019;64:105007.
  • 18. Kwon SI, Ota R, Berg E, Hashimoto F, Nakajima K, Ogawa I, et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nat Photonics 2021;15:914-8.
  • 19. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661-81.
  • 20. Carson RE, Kuo PH. Brain-dedicated emissio tomography systems: a perspective on requirements for clinical research and clinical needs in brain imaging. IEEE Trans Radiat Plasma Med Sci 2019;3:254-61.
  • 21. Hooker JM, Carson RE. Human positron emission tomography neuroimaging. Annu Rev Biomed Eng 2019;21:551-81.
  • 22. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000;20:423-51.
  • 23. Fung EK, Carson RE. Cerebral blood flow with [15O]water PET studies using an image-derived input function and MR-defined carotid centerlines. Phys Med Biol 2013;58:1903-23.
  • 24. Faul M, Coronado V. Epidemiology of traumatic brain injury. In: Handbook of clinical neurology, vol 127. Elsevier; 2015: 3-13 pp.
  • 25. Morbelli S, Garibotto V, Van De Giessen E, Arbizu J, Chetelat G, Drezgza A, et al. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging 2015;42:1487-91.
  • 26. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med 2016;8:348ra96.
  • 27. Kelley P, Evans MDR, Kelley J. Making memories: why time matters. Front Hum Neurosci 2018;12:400.
  • 28. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol 2018;75:1215-24.
  • 29. Funck T, Palomero-Gallagher N, Omidyeganeh M, Lepage C, Toussaint PJ, Khalili N, et al. Towards a gold standard for validation of quantification methods for PET neuroreceptor imaging. In: 29th international symposium on cerebral blood flow, metabolism and function; 2019: Journal of Cerebral Blood Flow & Metabolism.
  • 30. Molnar Z, Clowry GJ, Sestan N, Alzu’bi A, Bakken T, Hevner RF, et al. New insights into the development of the human cerebral cortex. J Anat 2019;235:432-51. [Epub 2019/08/03].
  • 31. Surti S, Karp J. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol 2015;60:5343.
  • 32. Zhang XZ, Zhou J, Cherry SR, Badawi RD, Qi JY. Quantitative image reconstruction for total-body PET imaging using the 2- meter long EXPLORER scanner. Phys Med Biol 2017;62: 2465-85.
  • 33. Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol 2017;62:2465-85.
  • 34. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med 2017;9:eaaf6169.
  • 35. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Totalbody PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 2018;59: 3-12.
  • 36. Leung EK, Judenhofer MS, Cherry SR, Badawi RD. Performance assessment of a software-based coincidence processor for the EXPLORER total-body PET scanner. Phys Med Biol 2018;63: 18NT01.
  • 37. Berg E, Zhang X, Bec J, Judenhofer MS, Patel B, Peng Q, et al. Development and evaluation of mini-EXPLORER: a long axial field-of-view PET scanner for nonhuman primate imaging. J Nucl Med 2018;59:993-8.
  • 38. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299-303.
  • 39. Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Totalbody dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med 2019;61:285-91. [Epub 2019/07/16].
  • 40. Zhang X, Xie Z, Berg E, Judenhofer M, Liu W, Lv Y, et al. Total-body parametric imaging using kernel and direct reconstruction on the uEXPLORER. J Nucl Med 2019;60(1 Suppl):456.
  • 41. Zhang X, Cherry S, Badawi R, Qi J. Total-body dynamic PET imaging with 100-ms temporal resolution. Montreal, QC, Canada: World Molecular Imaging Congress; 2019.
  • 42. Deng Z, Hu D, Ding Y, Dong Y. A comparison of image quality with uMI780 and the first total-body uEXPLORER scanner. J Nucl Med 2019;60(1 Suppl):381.
  • 43. Karp JS, Vishwanath V, Geagan M, Muehllehner G, Pantel A, Parma M, et al. PennPET explorer: design and preliminary performance of a whole-body imager. J Nucl Med June 2019;21. https://doi.org/10.2967/jnumed.119.229997.
  • 44. Pantel AR, Viswanath V, Daube-Witherspoon ME, Dubroff JG, Muehllehner G, Parma MJ, et al. Human imaging on a wholebody imager. J Nucl Med 2019. https://doi.org/10.2967/jnumed.119.231845.
  • 45. Viswanath V, Daube-Witherspoon M, Karp J, Surti S. Lesion detectability in long axial field of view TOF PET scanners. J Nucl Med 2019;60(1 Suppl):107.
  • 46. Lyu Y, Lv X, Liu W, Judenhofer MS, Zwingenberger A, Wisner ER, et al. Mini EXPLORER II: a prototype high-sensitivity PET/CT scanner for companion animal whole body and human brain scanning. Phys Med Biol 2019;64. https://doi.org/10.1088/1361-6560/aafc6c.
  • 47. [D] Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020;7:35.
  • 48. Moliner L, Rodríguez-Alvarez MJ, Catret JV, González A, Ilisie V, Benlloch JM. NEMA performance evaluation of CareMiBrain dedicated brain PET and comparison with the whole body and dedicated brain PET systems. Sci Rep 2019:9;15484.
  • 49. Tashima H, Yamaya T. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging. Phys Med Biol 2016;61:7205-20.
  • 50. Ahmed AM, Tashima H, Yoshida E, Nishikido F, Yamaya T. Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors. Phys Med Biol 2017;62:4541-50.
  • 51. Ahmed M, Tashima H, Yoshida E, Yamaya T. Investigation of the optimal detector arrangement for the helmet-chin PET - a simulation study. Nucl Instrum Methods Phys Res A 2017;858: 96-100.
  • 52. Gong K, Majewski S, Kinahan PE, Harrison RL, Elston BF, Manjeshwar R, et al. Designing a compact high performance brain PET scanner-simulation study. Phys Med Biol 2016;61: 3681-97.
  • 53. Schmidtlein CR, Turner JN, Thompson MO, Mandal KC, Haggstrom I, Zhang J, et al. Performance modeling of a wearable brain PET (BET). In: Proceedings SPIE. San Diego, USA: SPIE; 2016:9788 p.
  • 54. Schmidtlein CR, Turner JN, Thompson MO, Mandal KC, Haggstrom Zhang J, Humm JL, et al. Initial performance studies of a wearable brain positron emission tomography camera based on autonomous thin-film digital Geiger avalanche photodiode arrays. J Med Imaging 2017;4:011003.
  • 55. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner- an economic total-body PET from plastic scintillators. Phys Med Biol 2021;66:175015.
  • 56. Tai YC, Wu H, Pal D, O’Sullivan JA. Virtual-pinhole PET. J Nucl Med 2008;49:471-9.
  • 57. Jiang J, Samanta S, Li K, Siegel SB, Mintzer RA, Cho S, et al. Augmented whole-body scanning via magnifying PET. IEEE Trans Med Imaging 2020;39:3268-77.
  • 58. Jiang J, Li K, Wang Q, Puterbaugh K, Young JW, Siegel SB, et al. A second-generation virtual-pinhole PET device for enhancing contrast recovery and improving lesion detectability of a wholebody PET/CT scanner. Med Phys 2019;46:4165-76.
  • 59. Jiang J, Samanta S, Li K, Hamdi M, Siegel SB, Mintzer R, et al. Augmented whole-body scanning via magnifying PET. J Nucl Med 2020;61(1 Suppl):309.
  • 60. Zhou J, Qi J. Theoretical analysis and simulation study of a highresolution zoom-in PET system. Phys Med Biol 2009;54:5193.
  • 61. Zhou J, Qi J. Adaptive imaging for lesion detection using a zoomin PET system. IEEE Trans Med Imag 2010;30:119-30.
  • 62. Carson R, Berg E, Ramsey B, Cherry S, Du J, Tao F, et al. Design of the NeuroEXPLORER, a next-generation ultra-high performance human brain PET imager. J Nucl Med 2021;62(1 Suppl):1120.
  • 63. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932-45.
  • 64. Guillette N, Sarrhini O, Lecomte R, Bentourkia M. Correction of partial volume effect in the projections in PET studies. Conference: IEEE Nuclear Science Symposium 2010:3541-3. https://doi.org/10.1109/NSSMIC.2010.5874467.
  • 65. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012;57:R119-59.
  • 66. Cysouw MCF, Golla SVS, Frings V, Smit EF, Hoekstra OS, Kramer GM, et al. Partial-volume correction in dynamic PET-CT: effect on tumor kinetic parameter estimation and validation of simplified metrics. EJNMMI Res 2019;9:12.
  • 67. Yang J, Hu C, Guo N, Dutta J, Vaina LM, Johnson KA, et al. Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease. Sci Rep 2017;7:13035.
  • 68. Wienhard K, Schmand M, Casey M, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 2002;49:104-10.
  • 69. Eriksson L, Wienhard K, Eriksson M, Casey ME, Knoess C, Bruckbaer T, et al. The ECAT HRRT: NEMA NEC evaluation of the HRRT system, the new high-resolution research tomograph. IEEE Trans Nucl Sci 2002;49:2085-8.
  • 70. VanVelden FH, Kloet RW, van Berckel BN, Buijs FL, Luurtsema G, Lammertsma AA, et al. HRRT versus HR+ human brain PET studies: an interscanner test-retest study. J Nucl Med 2009;50:693-702.
  • 71. Yamaya T, Yoshida E, Obi T, Ito H, Yoshikawa K, Murayama H. First human brain imaging by the jPET-D4 prototype with a precomputed system matrix. IEEE Trans Nucl Sci 2008;55:2482-92.
  • 72. Z Wang, W Yu, S Xie. A dedicated PET system for human brain and head/neck imaging, published in: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), https://doi.org/10.1109/NSSMIC.2013.6829112.
  • 73. NeuroPET/CT PhotoDiagnostic systems. Available from: https://www.photodiagnostic.com/petct.
  • 74. Grogg KS, Toole T, Ouyang J, Zhu X, Normandin M, Johnson K, et al. NEMA and clinical evaluation of a novel brain PET-CT scanner. J Nucl Med 2016;57:646-52.
  • 75. CerePET. Brain biosciences. Available from: https://www.linkedin.com/company/brain-biosciences-inc.
  • 76. Gómez Herrero JA, Navarro García J, Carlos M, Vicente A, José L, Serra P, et al. Development of a new device for the early diagnosis of Alzheimer’s disease. Rev Biomechan. http://www. biomecanicamente.org/item/1159-rb65-caremibrain-english.html?tmpl=component&print=1.
  • 77. CareMiBrain imager, ONCOVISION, Valencia, Spain, https://www.oncovision.com.
  • 78. Gaudin E, Toussaint M, Thibaudeau C, Fontaine R, Normandin M, Petibon Y, et al. Simulation studies of the SAVANT high resolution dedicated brain PET scanner using individually coupled APD detectors and DOI encoding. J Nucl Med 2019;60:531.
  • 79. NeuroLF, Positrigo. Available from: https://www.positrigo.com/.
  • 80. Bläckberg L, Sanchez D, Borghi G, Ballabriga R, Sajedi S, Gómez S, et al. High sensitivity and high resolution dynamic brain-dedicated TOF-DOI PET scanner. In: 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/ MIC). 978-78-1-7281-7693-2/20. https://doi.org/10.1109/NSS/ MIC42677.2020.9507837.
  • 81. Gaudin E, Toussaint M, Thibaudeau C, Paille M, Fontaine R, Lecomte R. Performance simulation of an ultra-high resolution brain PET scanner using 1.2 mm pixel detectors. IEEE Trans Radiat Plasma Med Sci 2019;3:334-42.
  • 82. Organ specific PET, prescient imaging. Available from: http://prescient-imaging.com/.
  • 83. González AJ, Majewski S, Sánchez F, Aussenhofer S, Aguilar A, Conde P, et al. The MINDView brain PET detector, feasibility study based on SiPM arrays. Nucl Instrum Methods Phys Res 2016;818:82-90.
  • 84. Benlloch JM, González AJ, Pani R, Preziosi E, Jackson C, Murphy J, et al. The MINDVIEW project: first results. Eur Psychiatry 2018. https://doi.org/10.1016/j.eurpsy.2018.01.002.
  • 85. Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Radiat Plasma Med Sci 2017;1. https://doi.org/10.1109/trpms.2017.2756674.
  • 86. Prior J. The 10-ps TOF PET: clinical applications, presented at the FATA2019: FAst Timing Applications for nuclear physics and medical imaging, 3-5 September 2019, Accademia degli Zelanti e dei Dafnici. Catania, Italy: Acireale. https://agenda.infn.it/event/18991/timetable/.
  • 87. Gasper Razdevsek P, Dolenec R, Peter K, Majewski S, Studen A, Korpar S, et al. Multi-panel limited angle PET system with 50 ps FWHM coincidence time resolution: a simulation study. accepted for publication in Trans Radiat Plasma Med Sci 2021: 2021. https://doi.org/10.1109/TRPMS.2021.3115704.
  • 88. Harmon ES, Thompson MO, Ross Schmidtlein C, Turner JN, Krol A. Towards 50 ps TOF-PET for brain imaging. Proc. SPIE 10953, Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging 2019:1095303. https://doi.org/10.1117/12.2515123.
  • 89. The Siemens Biograph vision PET/CT. https://www.siemenshealthineers.com/en-us/molecular-imaging/pet-ct/biographvision.
  • 90. van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital Biograph Vision PET/CT system. J Nucl Med 2019. https://doi.org/10.2967/jnumed.118.215418.
  • 91. Kyme AZ, Se S, Meikle SR, Fulton RR. Markerless motion estimation for motion-compensated clinical brain imaging. Phys Med Biol 2018;63:105018.
  • 92. Lu Y, Gallezot JD, Naganawa M, Fontaine K, Toyonaga T, Ren S, et al. Data-driven motion detection and event-by-event correction for brain PET. J Nucl Med. 2018;59(1 Suppl).
  • 93. Lu Y, Gallezot JD, Naganawa M, Ren S, Fontaine K, Wu J, et al. Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Phys Med Biol 2019;64:065002.
  • 94. Ren S, Lu Y, Bertolli O, Thielemans K, Carson RE. Event-by-event non-rigid data-driven PET respiratory motion correction methods: comparison of principal component analysis and centroid of distribution. Phys Med Biol 2019;64:165014.
  • 95. Sun C, Fontaine K, Revilla E, Toyonaga T, Gallezot JD, Mulnix T, et al. A data-driven quality control method for head motion tracking in PET. IEEE NSS/MIC. 2019.
  • 96. Hurley S, Spangler-Bickell M, Deller T, Bradshaw T, Jansen F, McMillan A. Data-driven rigid motion correction of PET brain images using list mode reconstruction. J Nucl Med 2019;60 (1 Suppl):1358.
  • 97. Shi H, Du D, Xu J, Peng Q. Assessment of dedicated brain PET designs with different geometries. IEEE MIC; 2013.
  • 98. Shi H, Du D, Xu J, Peng Q. PMT based pentagonal and hexagonal detector module designs for convex polyhedron PET systems. IEEE MIC; 2013.
  • 99. Han S, Dong Du, Xu JF, Su Z, Peng Q. Design study of dedicated brain PET with polyhedron geometry. Technol Health Care 2015; 23:S615-23.
  • 100. Xu JF, Huang Q, Weng F, Zan Y, Chen J, Xie S, et al. Progresses in designing a high-sensitivity dodecahedral PET for brain imaging, nuclear science symposium. In: Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD); 2016.
  • 101. Derenzo SE, Choong W-S, Moses WW. Monte Carlo calculations of PET coincidence timing: single and double-ended readout. Phys Med Biol 2015;60:7309.
  • 102. Derenzo SE. Monte Carlo simulations of time-of-flight PET with double-ended readout: calibration, coincidence resolving times and statistical lower bounds. Phys Med Biol 2017;62: 3828-58.
  • 103. Philadelphia SSS, Karp JS. Limited angle tomography with timeof-flight PET; 2014. US Patent US 8,698,087 B2, Apr. 15.
  • 104. Cal-Gonzalez J, Rausch I, Lalith K, Sundar S, Lassen ML, Muzik O, et al. Hybrid imaging: instrumentation and data processing. Front Phys 2018:6. Article 47.https://doi.org/10.3389/fphy.2018.00047. www.frontiersin.org.
  • 105. Hong KJ, Ho Jung YCJ, Kang J, Hu W, Lim HK, Huh Y, et al. A prototype MR insertable brain PET using tileable GAPD arrays. Med Phys 2013;40. https://doi.org/10.1118/1.4793754.
  • 106. González AJ, Conde P, Hernández L, Herrero V, Moliner L, Monzó JM, et al. Design of the PET-MR system for head imaging of the DREAM project. Nucl Instrum Methods 2013;702:94-7.
  • 107. Cho G, Choi Y, Sung Lee J, An HJ, Jung JH, Park HW, et al. Preliminary evaluation of a brain PET insertable to MRI. EJNMMI Phys 2014;1(1 Suppl):A13. http://www.ejnmmiphys.com/ content/1/S1/A13.
  • 108. Galve P, Catana C, Herraiz JL, Udía JM. GPU based fast and flexible iterative reconstructions of arbitrary and complex PET scanners: application to next generation dedicated brain scanners. In: M-03 - 2020 IEEE NSS-MIC conference.
  • 109. Catana C. Development of dedicated brain PET imaging devices - recent advances and future perspectives. J Nucl Med 2019. https://doi.org/10.2967/jnumed.118.217901.
  • 110. Nakamoto R, Nakamoto Y, Ishimori T, Fushimi Y, Kido A, Togashi K. Comparison of PET/CT with sequential PET/MRI using an MR-compatible mobile PET system. J Nucl Med 2017;2. https://doi.org/10.2967/jnumed.117.197665.
  • 111. Vaska P, Woody CL, Schlyer DJ, Shokouhi S, Stoll SP, Pratte JF, et al. RatCAP: miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Trans Nucl Sci 2004;51:2718-22.
  • 112. Majewski S, Proffitt J. 2011. Compact and mobile high resolution PET brain imager. US Patent. 7,884,331.
  • 113. Majewski S, Proffitt J, Brefczynski-Lewis J, Stolin A, Weisenberger AG, Xi W, et al. A silicon photomultiplier based wearable brain imager. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Valencia, Spain, 23–29 October 2011. 4030-4 pp.
  • 114. Bauer CE, Brefczynski-Lewis J, Marano G, Mandich M-B, Stolin A, Martone P, et al. Concept of an upright wearable positron emission tomography imager in humans. Brain Behav 2016;00: 1-10: e00530.
  • 115. Melroy S, Bauer C, McHugh M, Carden G, Stolin A, Majewski S, et al. Development and design of next-generation headmounted ambulatory microdose positron-emission tomography (AM-PET) system. Sensors 2017;17:1164.
  • 116. Majewski S and Brefczynski-Lewis J. VIRPET – combination of virtual reality and PET brain imaging, US Patent 9,655,573, 2017.
  • 117. Noble RM. Ambulatory microdose PET: a wearable PET scanner for neurologic imaging. J Nucl Med Technol 2019;47. https://doi.org/10.2967/jnmt.119.228718.
  • 118. Volkow N. presentation at the BRAIN initiative workshop: transformative non-invasive imaging technologies. 2021. https://www.youtube.com/watch?v=A2p1oznwo6YNIH Brain Initiative Transformative.
  • 119. Non-invasive imaging technologies workshop. 2021. https://videocast.nih.gov/watch=40183.
  • 120. Yoshida E, Tashima K, Nagatsu K, Tsuji AB, Kamada K, Parodi K, et al. Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys Med Biol 2020;65:125013.
  • 121. Yoshida E, Tashima H, Nagatsu K, Tsuji AB, Kamada K, Parodi K, et al. Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys Med Biol 2020;65:125013.
  • 122. Tashima H, Yoshida E, Wakizaka H, Takahashi M, Nagatsu K, Tsuji AB, et al. Development of a hybrid image reconstruction algorithm combining PET and compton events for whole gamma imaging. In: 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). https://doi.org/10.1109/NSS/MIC42677.2020.9507841.
  • 123. Moskal P, Stępień EŁ. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. Pet Clin 2020; 15:439-52.
  • 124. Moskal P, Krawczyk N, Hiesmayr BC, Bala M, Curceanu C, Czerwiński E, et al. Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector. Eur Phys J C 2018;78:970.
  • 125. Moskal P, Kisielewska D, Curceanu C, Czerwińska E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019. https://doi.org/10.1088/1361-6560/aafe20.
  • 126. Moskal P. Positronium imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2019). 1-3 pp. https://doi.org/10.1109/NSS/MIC42101.2019.9059856.
  • 127. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527-9.
  • 128. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7. https://doi.org/10.1126/sciadv.abh4394.
  • 129. Moskal P, Gajos A, Mohammed M, Chhokar J, Chung N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12: 5658.
  • 130. Stępień E, Kubicz E, Grudzień G, Dulski K, Leszczyński B, Moskal P. Positronium life-time as a new approach for cardiac masses imaging. Eur Heart J 2021;42(1 Suppl). https://doi.org/10.1093/eurheartj/ehab724.3279.
  • 131. Jasińska B, Moskal P. A new PET diagnostic indicator based on the ratio of 3gamma/2gamma positron annihilation. Acta Phys Pol B 2017;48:1737.
  • 132. Godinez PF, Gong K, Zhou J, Judenhofer MS, Chaudhari AJ, Badawi RD. Development of an ultra high resolution PET scanner for imaging rodent paws: PawPET. IEEE Trans Radiat Plasma Med Sci 2018;2. https://doi.org/10.1109/TRPMS.2017.2765486.
  • 133. Gaudin E, Thibaudeau C, Arpin L, Fontaine R, Lecomte R. Imaging performance of a submillimetric spatial resolution APD-based preclinical PET scanner dedicated to mouse imaging. Atlanta: presented at the IEEE MIC; 2017:21-8 pp.
  • 134. Yamamoto S, Watabe H, Watabe T, Ikeda H, Kanai Y, Ogata Y, et al. Development of ultrahigh resolution Si-PM-based PET system using 0.32 mm pixel scintillators. Nucl Instrum Methods Phys Res 2016;836:7-12.
  • 135. Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res 2011;648(Suppl):S236-40.
  • 136. Niknejad T, Pizzichemi M, Stringhini G, Auffray E, Bugalho R, Silva JCD, et al. Development of high-resolution detector module with depth of interaction identification for positron emission tomography. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2017;845(C Suppl):684-8. https://doi.org/10.1016/j.nima.2016.04.080 http://www. sciencedirect.com/science/article/pii/S0168900216302935.
  • 137. Du J, Bai X, Gola A, Acerbi F, Ferri A, Piemonte C, et al. Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays. Phys Med Biol 2018;63:035035.
  • 138. Du J, Bai X, Cherry SR. Performance comparison of depthencoding detectors based on dual-ended readout and different SiPMs for high-resolution PET applications. Phys Med Biol 2019; 64:15NT03.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0e14cd6-b2e7-43f3-87e9-79450ddccf04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.