Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Prestack reverse time migration (RTM), as a two way wave-field extrapolation method, can image steeply dipping structures without any dip limitation at the expense of potential increase in imaging artifacts. In this paper, an efficient symplectic scheme, called Leapfrog-Rapid Expansion Method (L-REM), is first introduced to extrapolate the wavefield and its derivative in the same time step with high accuracy and free numerical dispersion using a Ricker wavelet of a maximum frequency of 25 Hz. Afterwards, in order to suppress the artifacts as a characteristic of RTM, a new imaging condition based on Poynting vector and a type of weighting function is presented. The capability of the proposed new imaging condition is then tested on synthetic data. The obtained results indicate that the proposed imaging condition is able to suppress the RTM artifacts effectively. They also show the ability of the proposed approach for improving the amplitude and compensate for illumination.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1673--1690
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
- Shahrood University of Technology, Faculty of Mining Petroleum and Geophysics, Shahrood, Semnan, Iran
autor
- Shahrood University of Technology, Faculty of Mining Petroleum and Geophysics, Shahrood, Semnan, Iran
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
autor
- Center for Research in Geophysics and Geology (CPGG), Federal University of Bahia (UFBA), Salvador, Brazil
autor
- Shahrood University of Technology, Faculty of Mining Petroleum and Geophysics, Shahrood, Semnan, Iran
Bibliografia
- Araujo, E.S., R.P. Pestana, and A.W.G. Santos (2014), Symplectic scheme and the Poynting vector in reverse-time migration, Geophysics 79, 5, 1-10, DOI: 10.1190/geo2013-0303.1.
- Arnold, V.I. (1989), Mathematical Methods of Classical Mechanics, 2nd ed., Springer.
- Baysal, E., D.D. Kosloff, and J.W.C. Sherwood (1983), Reverse-time migration, Geophysics 48, 1, 1514-1524, DOI: 10.1190/1.1441434.
- Bonomi, E., L. Brieger, C. Nardone, and E. Pieroni (1998), 3D spectral reverse time migration with no-wraparound absorbing conditions. In: 78th Ann Int. Mtg. SEG, Expanded Abstracts, 1925-1928.
- Chattopadhyay, S., and G.A. McMechan (2008), Imaging conditions for prestack reverse-time migration, Geophysics 73, 3, S81-S89, DOI: 10.1190/ 1.2903822.
- Chen, J. (2009), Lax-Wendroff and Nyström methods for seismic modelling, Geophys. Prospect. 57, 6, 931-941, DOI: 10.1111/j.1365-2478.2009.00802.x.
- Chen, T., and L. Huang (2014), Imaging steeply-dipping fault zones using elastic reverse-time migration with a combined wave-field separation and Poynting vector imaging condition. In: Proc. 39th Workshop on Geothermal Reservoir Engineering, 24-26 February 2014, Stanford University, Stanford, USA, SGP-TR-202.
- Claerbout, J.F. (1971), Toward a unified theory of reflector mapping, Geophysics 36, 3, 467-481, DOI: 10.1190/1.1440185.
- Costa, J.C., F.A. Silva, M. R. Alcantara, J. Schleicher, and A. Novais (2009), Obliquity-correction imaging condition for reverse time migration, Geophysics 74, 3, 57-66, DOI: 10.1190/1.3110589.
- Dablain, M.A. (1986), The application of high-order differencing to the scalar wave equation, Geophysics 51, 1, 54-66, DOI: 10.1190/1.1442040.
- Deriglazov, A.A., and J.G. Filgueiras (2009), Hamiltonian Formulation and Canonical Transformations in Classical Mechanics, Library of Physics Publication, São Paulo.
- Dickens, A., and G.A. Winbow (2011), RTM angle gathers using Poynting vectors. In: 81st Ann Int. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 3109- 3113.
- Du, Q.Z., and T. Qin (2009), Multicomponent prestack reverse-time migration of elastic waves in transverse isotropic medium, Chin. J. Geophys. 52, 2, 471- 478, DOI: 10.1002/cjg2.1367.
- Etgen, J. (1986), High-order finite-difference reverse time migration with the 2-way non-reflecting wave equation, Stanford Exploration Project 48, 133-146.
- Fei, T.W., Y. Luo, and G.T. Schuster (2010), De-blending reverse-time migration. In: Soc. Expl. Geophys., Technical Program Expanded Abstracts, 29, 3130- 3134.
- Fernandez, A.B. (2010), Subsalt seismic imaging illumination study, M.Sc. Thesis, University of Houston. Fletcher, R.F., P. Fowler, P. Kitchenside, and U. Albertin (2005a), Suppressing artifacts in prestack reverse-time migration. In: 75th Ann Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2049-2051.
- Fletcher, R.F., P. Fowler, P. Kitchenside, and U. Albertin (2005b), Suppressing unwanted internal reflections in prestack reverse time migration, Geophysics 71, 6, E79-E82, DOI: 10.1190/1.2356319.
- Fleury, C. (2010), Investigating an imaging condition for nonlinear imaging- principles and application to reverse-timemigration artifacts removal. In: Soc. Expl. Geophys., Ann Mtg., Denver 2010, 3338-3343.
- Guitton, A., B. Kaelin, and B. Biondi (2007), Least-squares attenuation of reversetime-migration artifacts, Geophysics 72, 1, S19‐S23, DOI: 10.1190/ 1.2399367.
- Jin, H., G.A. McMechan, and H. Guan (2014), Comparison of methods for extracting ADCIGs from RTM, Geophysics 79, 3, 89-103, DOI: 10.1190/ geo2013-0336.1.
- Kaelin, B., and A. Guitton (2006), Imaging condition for reverse time migration. In: 76th Int. Ann Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2594-2597.
- Kosloff, D., A.Q. Filho, E. Tessmer, and A. Behle (1989), Numerical solution of the acoustic and elastic wave equations by a new rapid expansion method, Geophys. Prospect. 37, 4, 383-394, DOI: 10.1111/j.1365-2478.1989. tb02212.x.
- Liu, F., G. Zhang, S.A. Morton, and J.P. Leveille (2011), An effective imaging condition for reverse-time migration using wavefield decomposition, Geophysics 76, 1, S29-S39, DOI: 10.1190/1.3533914.
- McMechan, G.A. (1983), Migration by extrapolation of time-dependent boundary values, Geophys. Prospect. 31, 3, 413-420, DOI: 10.1111/j.1365- 2478.1983.tb01060.x.
- Mulder, W.A., and R.E. Plessix (2004), A comparison between one-way and twoway wave-equation migration, Geophysics 69, 6, 1491‐1504, DOI: 10.1190/1.1836822.
- Pestana, R.C., and A.W.G. dos Santos (2013), RTM imaging condition using impedance sensitivity kernel combined with Poynting vector. In: 13th Int. Congress of the Brazilian Geophysical Society (SBGF), 26-29 August 2013, Rio de Janeiro, Brazil.
- Pestana, R.C., and P.L. Stoffa (2009), Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM). In: SEG Technical Program Expanded Abstracts 2009, 2819-2823, DOI: 10.1190/1.3255434.
- Pestana, R.C., and P.L. Stoffa (2010), Time evolution of the wave equation using rapid expansion method, Geophysics 75, 4, T121-T131, DOI: 10.1190/ 1.3449091.
- Pestana, R.C., P.L. Stoffa, and A.W.G. dos Santos (2012), The relation between finite differences in time and the Chebyshev polynomial recursion. In: 82nd Ann Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, DOI: 10.1190/ segam2012-0833.1.
- Rickett, J.E., and P.C. Sava (2002), Offset and angle-domain common image point gathers for shot-profile migration, Geophysics 67, 3, 883-889, DOI: 10.1190/1.1484531.
- Sava, P., and S. Fomel (2006), Time-shift imaging condition in seismic migration, Geophysics 71, 6, S209-S217, DOI: 10.1190/1.2338824.
- Sava, P., and I. Vasconcelos (2011), Extended imaging conditions for wave-equation migration, Geophys. Prospect. 59, 1, 35-55, DOI: 10.1111/j.1365-2478. 2010.00888.x.
- Sexton, J.C., and D.H. Weingarten (1992), Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380, 3, 665, DOI: 10.1016/0550- 3213(92)90263-B.
- Skell, R.H., G. Zhang, and T. Schlick (1997), A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications, SIAM J. Num. Anal. 18, 203-222, DOI: 10.1137/ S1064827595282350.
- Song, J. (2001), The optimized expression of a high dimension function/manifold in a lower dimensional space, Chin. Sci. Bull. 46, 977-984.
- Soubaras, R., and Y. Zhang (2008), Two-step explicit marching method for reverse time migration. In: 70th Ann Int. Conference and Exhibition, EAGE, Extended Abstracts.
- Stolk, C.C., M.V. de Hoop, and Op’t Root (2009), Linearized inverse scattering based on seismic reverse-time migration. In: Proc. the Project Review, Geo-Mathematical Imaging Group – Purdue University.
- Tal-Ezer, H., D. Kosloff, and Z. Koren (1987), An accurate scheme for forward seismic modelling, Geophys. Prospect. 35, 5, 479-490, DOI: 10.1111/ j.1365-2478.1987.tb00830.x.
- Tessmer, E. (2011), Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration, Geophysics 76, 4, S177-S185, DOI: 10.1190/1.3587217.
- Valenciano, A., and B. Biondi (2003), 2-D deconvolution imaging condition for shot-profile migration. In: 73rd Int. Ann Mtg. Soc. Expl. Geophys., ExpandedAbstracts, 2431-2433.
- Vivas, F., and R.P. Pestana (2007), Imaging condition to true amplitude shot-profile migration. In: 77rd Ann. Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2398-2402.
- Wards, B.D., G.F. Margrave, and M.P. Crewes e Lamoureux (2008), Phase-shift time-stepping for reverse-time migration. In: 78th Ann Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, Las Vegas/EUA.
- Whitmore, D.N. (1983), Iterative depth imaging by back time propagation. In: 53rd Ann Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 382-385.
- Whitmore, N.D., and S. Crawley (2012), Application of RTM inverse scattering imaging conditions. In: 82nd Ann Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts.
- Xie, X.B., and R. Wu (2006), A depth migration method based on the full-wave reverse-time calculation and local one-way propagation. In: 76th Ann. Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2333‐2337.
- Yoon, K., and K. Marfurt (2006), Reverse-time migration using the Poynting vector, Explor. Geophys. 37, 1, 102-107, DOI: 10.1071/EG06102.
- Yoon, K., K.J. Marfurt and W. Starr (2004), Challenges in reverse-time migration. In: 74th Ann. Int. Mtg. Soc. Expl. Geophys. Expanded Abstracts, 1057‐ 1060.
- Yoon, K., M. Guo, J. Cai, and B. Wang (2011), 3D RTM angle gathers from source wave propagation direction and dip of reflector. In: 81st Ann Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1057-1060.
- Yoshida, H. (1990), Construction of higher order symplectic integrators, Phys. Lett. A 150, 262-268, DOI: 10.1016/0375-9601(90)90092-3.
- Youn, O.K., and H. Zhou (2001), Depth imaging with multiples, Geophysics 66, 1, 246-255, DOI: 10.1190/1.1444901.
- Zhang, Y., and G. Zhang (2009), One-step extrapolation method for reverse time migration, Geophysics 74, 4, A29-A33, DOI: 10.1190/1.3123476.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0dbcb94-1f8f-4372-809d-0a619a7cfe58