PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation and Heat Treatment Process of Carbon Nanotube Modified Aluminum Alloy (ZL105)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To further improve the mechanical properties of carbon nanotubes (CNTs) modified aluminum alloy (ZL105), the first principle was used to build the atomic structure of the alloy system and the alloy system was simulated by the VASP. After that, the heat treatment process of the cast aluminium alloy material with CNTs to enhance the alloy performance by the orthogonal experiment. The results of the research show that: (1) The energy status of the alloy system could be changed by adding the C atoms, but it did not affect the formation and structural stability of the alloy system, and the strong bond compounds formed by C atoms with other elements inside the solid solution structure can significantly affect the material properties. (2) The time of solid solution has the greatest influence on the performance of material that was modified by CNTs. The solution temperature and aging temperature were lower strength affection, and the aging time is the lowest affection. This paper provides a new research method of combining the atomic simulation with the casting experiment, which can provide the theoretical calculations to reduce the experiment times for the casting materials’ performance improvement.
Rocznik
Strony
38--50
Opis fizyczny
Bibliogr. 46 poz., il., tab., wykr.
Twórcy
autor
  • School of Mechanical & Electrical Engineering, Guizhou Normal University, China
autor
  • School of Mechanical & Electrical Engineering, Guizhou Normal University, China
autor
  • School of Mechanical & Electrical Engineering, Guizhou Normal University, China
autor
  • Guiyang Huaheng Mechanical Manufacture CO., LTD, China
autor
  • Guizhou University, China
autor
  • School of Mechanical & Electrical Engineering, Guizhou Normal University, China
Bibliografia
  • [1] Okayasu, M., Wu, S. & Hasanah, I.U. (2022). Effect of carbon nanotubes on the mechanical properties of cast Al-Si-Cu alloys. Materials Science and Technology 38(4), 237-245. https://doi.org/10.1080/02670836.2022.2037058.
  • [2] Hassanzadeh-Aghdam, M.K., Ansari, R. & Mahmoodi, M.J. (2018). Thermal expanding behavior of carbon nanotube-reinforced metal matrix nanocomposites-A micromechanical modeling. Journal of Alloys and Compounds 744, 637-650. https://doi.org/10.1016/j.jallcom.2018.02.100.
  • [3] Okayasu, M., Sahara, N. & Mayama, N. (2022). Effect of the microstructural characteristics of die-cast ADC12 alloy controlled by Na and Cu on the mechanical properties of the alloy. Materials Science and Engineering: A. 831, 142120. https://doi.org/10.1016/j.msea.2021.142120.
  • [4] Rodrigues, F.A.d.S., Paraguassu, W., Simões Vieira, S., M.F.G., Souza, J.A.d.S., Braga, E.d.M. & Reis, M.A.L.d. (2017). Electrical and tensile properties of carbon nanotubes reinforced aluminum alloy 6101 wire. Journal of Nanoscience and Nanotechnology. 17(7) 4837-4841. https://doi.org/10.1166/jnn.2017.13429.
  • [5] Dobrzański, L.A., Tański, T. & Trzaska, J. (2010). Optimization of heat treatment conditions of magnesium cast alloys. Materials Science Forum. 638-642, 1488-1493. DOI:10.4028/www.scientific.net/MSF.638-642.1488.
  • [6] Li, R.X., Li, C.X. & Li, R.D. (2006). Study on the best heat treatment process of casting Al-Si-Cu-Mg alloy. Casting. (10), 1015-1019.
  • [7] Li, B., Wang, X., Chen, H., Hu, J., Huang, C. & Gou, G. (2016). Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy. Journal of Alloys and Compounds. 678, 160-166. https://doi.org/10.1016/j.jallcom.2016.03.228.
  • [8] F. Saba, F., Sajjadi, S.A., Haddad-Sabzevar, M. & Zhang, F. (2017). Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nano-carbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites. Carbon. 115, 720-729. https://doi.org/10.1016/j.carbon. 2017.01.062.
  • [9] S.H. Zhou, S.H. & Napolitano, R.E. (2010). Phase stability for the Cu-Zr system: First-principles, experiments and solution_based modeling. Acta Materialia. 58(6), 2186-2196. https://doi.org/10.1016/j.actamat.2009.12.004.
  • [10] Liu, H., Papadimitriou, I., Lin, F.X. & Llorca, J. (2019). Precipitation during high temperature aging of Al-Cu alloys: A multiscale analysis based on first principles calculations. Acta Materialia. 167, 121-135. https://doi.org/10.1016/j.actamat.2019.01.024.
  • [11] Zhang, W.P., Ma, M.L., Yuan, J.W., Shi, G.-l., Li, Y.-j., Li, X.- g. & Zhang, K. (2020). Microstructure and thermophysical properties of Mg2ZnxCu alloys, Transactions of Nonferrous Metals Society of China 30(7), 1803-1815. https://doi.org/10.1016/s1003-6326(20)65340-7.
  • [12] Stemper, L., Tunes, M.A., Dumitraschkewitz, P., Mendez-Martin, F., Tosone, R., Marchand, D., Curtin, W.A. Uggowitzer, P.J. & Pogatscher, S. (2021). Giant hardening response in AlMgZn(Cu) alloys. Acta Materialia. 206 https://doi.org/10.1016/j.actamat.2020.116617.
  • [13] Petrik, M., Razumov, I., Gornostyrev, Y., Naschetnikova, I. & Popov, A. (2022). Kinetics of ordering and decomposition in Ti-Al-X (X=Si, Zr) alloys: monte carlo modeling. Materials (Basel). 15(16). https://doi.org/10.3390/ma15165722.
  • [14] Wu, B., Xie, Z., Huang, J., Lin, J., Yang, Y., Jiang, L., Huang, J., Ye, G., Zhao, C., Yang, S. & Sa, B. (2018). Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi. Intermetallics. 93, 40-46. https://doi.org/10.1016/j.intermet.2017.10.018.
  • [15] Haryadi, D. & Rudianto, H. (2020). Study of first principles of Mg-Si binary systems as precipitates from T6 heat treatment of Al-Mg-Si alloys. Indonesian Journal of Applied Physics. 10(1), 16-23. https://doi.org/10.13057/ijap.v10i01.28912.
  • [16] Bhattacharyya, J.J., Wang, F., Stanford, N. & Agnew, S.R. (2018). Slip mode dependency of dislocation shearing and looping of precipitates in Mg alloy WE43. Acta Materialia 146, 55-62. https://doi.org/10.1016/j.actamat.2017.12.043.
  • [17] Li, M., Zhang, G., Yin, S., Wang, C., Fu, Y., Gu, C. & Guan, R. (2022). Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties. Journal of Magnesium and Alloys. 3, 1-13. https://doi.org/10.1016/j.jma.2022.09.027.
  • [18] Zhao, Y., Li, H. & Huang, Y. (2021). The structure, mechanical, electronic and thermodynamic properties of bcc Zr-Nb alloy: A first principles study. Journal of Alloys and Compounds. 862, 158029. https://doi.org/10.1016/j.jallcom.2020.158029.
  • [19] Zhang, B., Fu, L., Ge, H., Rong, X., Xiong, K., He, J. & Mao, Y. (2022). Revealing the Origin of Heterogeneous Phase Transition and Deformation Behavior in Au-Ag-Cu-Based Multicomponent Alloys. Metals. 12(11), 1-17. https://doi.org/10.3390/met12111966.
  • [20] Fransson, E., Gren, M. & Wahnström, G. (2021). Complexions and grain growth retardation: First-principles modeling of phase boundaries in WC-Co cemented carbides at elevated temperatures. Acta Materialia. 216, 1-11. https://doi.org/10.1016/j.actamat.2021.117128
  • [21] G. Wang, G. & Li, X.M. (2020). First-principles calculation of the effects of Cu and Co content on CoCuFeNi high-entropy alloys. Functional Materials. 51(03), 3189-3195.
  • [22] Yu, J.Y., Wang, K.M. & Wang, Z.M. (2018). First-principles calculation of elastic properties of high-entropy alloy CoCrFeNi. Journal of Liaoning University of Science and Technology. 41(05), 357-361. https://doi.org/10.13988/j.ustl.2018.05.006.
  • [23] Lv, Z., Yao, J.P., Tang, J.Q. & Chen, Z.J. (2022). First_principles study of electronic structure at the interface of 3C-SiC/Mg composites. Chinese Journal of Atomic and Molecular Physics interface. 39(04), 157-162. https://doi.org/10.19855/j.1000-0364.2022.046007.
  • [24] Xiong, M.Y., Zhang, R., Wen, D.L. & Su, X. (2022). First-principles study on electronic structure and p-type characteristics of Ag-O co-doped GaN nanotubes. Micro-Nano Electronics. 59(05), 410-416. https://doi.org/10.13250/j.cnki.wndz.2022.05.004.
  • [25] Wang, L.X., Yao, S. & Wen, B. (2019). First-principles calculation of the effect of Fe content on the AlFe_xTiCrZnCu mechanical properties of high entropy alloys. Materials Reports. 33(S2), 356-359.
  • [26] Deng, J. (2021). Design and first-principles calculation o f new magnetic semimetals and semiconductors[D]. University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences). https://doi.org/10.276 04/d.cnki.gwlys.2021.000057.
  • [27] Wang, V., Xu, N., Liu, J.C., Tang, G. & Geng, W.T. (2021). VASPKIT: A user-friendly interface facilitating high_throughput computing and analysis using VASP code. Computer Physics Communications. 267, 108033, 1-19. https://doi.org/10.1016/j.cpc.2021.108033.
  • [28] Kadioglu, Y., Üzengi Aktürk, O. & Tomak, M. (2014). Electronic and geometric structure of AuxCuy clusters st udied by density functional theory. International Journal of Modern Physics. C, 25(06), 1450011. https://doi.org/1 0.1142/s0129183114500119.
  • [29] Shao, G.J. (2009). Effect of addition of element Cu on precipitated phase behavior of Al-Mg-Si alloy. Journal of Materials and Heat Treatment. 30(03), 67-70.
  • [30] He, Z.W., Chen, J.B. & Yang, J.S. (2019). Structural construction and performance of FeNiMnCu0.2Alx based o n first principles. Journal of Wuhan University of Light Industry. 38(04), 37-39+93. https://doi.org/10.3969/j.issn.2 095-7386.2019.04.008.
  • [31] Lan, Z.H., Hou, M.Y., Wang, H.Y. & Ji, Y.G. (2014). Analyzing of energy band and density of states of ZnO. Applied Mechanics and Materials. 492, 273-275. DOI:10.4028/www.scientific.net/AMM.492.273.
  • [32] Man, T.T., Shang, J., Feng, J.L., Zhang, J.G., Shu, Y.J., Zhang, T.L. & Zhou, Z.N. (2013). Theoretical study of amino, hydrazine, azidodisubstituted hogentetrazine. Energetic Materials. 21(03), 281-288.
  • [33] Wang, X.J., Wang, L.L., Huang, W.Q., Tang, L.M. & Chen, K.Q. (2006). Local electronic states and electron transport in multicomponent superlattices with structural defects under magnetic fields. Acta Physica Sinica. (07), 3649-3655.
  • [34] Nemla, F. & Cherrad, D. (2022). First principles study of structural, elastic, electronic, and optical properties of the cubic perovskites AVO3 (A = Ca and La). Emergent Materials 5(1), 175-186. https://doi.org/10.1007/s42247-022-00369-9.
  • [35] Chen, J., Yoshida, K., Suzudo, T., Shimada, Y., Inoue, K., Konno, T.J. & Nagai, Y. (2022). In situ TEM observation and MD simulation of frank partial dislocation climbing in Al-Cu alloy. Materials Transactions. 63(4), 468-474. https://doi.org/10.2320/matertrans.MT-M2021233.
  • [36] Ravi Narayan, L. & Hebert, R.J. (2022). Rheology of partially solidified hypoeutectic aluminum copper alloys. SN Applied Sciences. 4(186), 1-14. https://doi.org/10.1007/s42452-022- 05070-4.
  • [37] Han, T. (2020). Effect of copper content on solidification characteristics of Al-Cu alloy. Metallurgy and Materials 40(05), 63-64.
  • [38] Luo, C., Liu, K., Shi, X.Q., Liang, X.B. & Zhang, J.W. (2020). Orthogonal test analysis of heat treatment process parameters of Ti-22Al-25Nb alloy. Hot Working Process. 49(16), 121-124. https://doi.org/10.14158/j.cnki.1001-3814.20200769.
  • [39] Yu, D.X., Hu, O.L. & Zeng, R.X. (2020). Effect of heat treatment process on microstructure and mechanical properties of low silicon Al-Si-Mg cast aluminum alloy. Shanghai Metal. 42(04), 66-71+77.
  • [40] Dai, X.Y., Xia, C.Q. & Liu, C.B. (2007). Effect of solution treatment and timeliness on microstructure and properties of 7xxx aluminum alloy. Journal of Materials and Heat Treatment. No.100(04), 59-63.
  • [41] Yu, W. (2020). Effect of aging time on microstructure and mechanical properties of automobile 6063 aluminum alloy. Hot Working Technology. 49(14), 134-136. https://doi.org/10.14158/j.cnki.1001-3814.20192766.
  • [42] Peng, K.W., Wu, W.Y., Xu, J.Y. & Tu, G.F. (2008). Chemical reactions and phase composition of B_4C and Al at high temperature. Rare Metals and Cemented Carbide. (01), 16- 19+33.
  • [43] He, C. (2020). Lattice defects and their partial polymerization characteristics in Mg-Bi and Mg-Gd alloys. Chongqing University. DOI: 10.27670/d.cnki.gcqdu.2020.000035.
  • [44] Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. & Lanka, S. (2010). Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology. 70(16) 2237-2241. https://doi.org/10.1016/j.compscitech.2010.05.004.
  • [45] Chen, M., Fan, G., Tan, Z., Yuan, C., Guo, Q., Xiong, D., Chen, M., Zheng, Q., Li, Z. & Zhang, D. (2019). Heat treatment behavior and strengthening mechanisms of CNT/6061Al composites fabricated by flake powder metallurgy. Materials Characterization. 153, 261-270. https://doi.org/10.1016/j.matchar.2019.05.017.
  • [46] Jin, J.M. (2000). Catalytic mechanism of carbonate in solid carburizing agent. Metal Heat Treatment. (10), 37-41. https://doi.org/10.13251/j.issn.0254-6051.2000.10.020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0da7444-078c-4426-bf4b-29e0d3ea17c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.