PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Late Carboniferous thin-skinned deformation in the Lublin Basin, SE Poland: Results of combined seismic data interpretation, structural restoration and subsidence analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the factors, which controlled the lateral change of structural style in the southeastern part of the Lublin Basin (Poland). Five selected seismic reflection profiles were interpreted with a focus on structural interpretation. Along the representative seismic reflection profile, a geological cross-section was constructed and restored. The structural model was supplemented/refined with core analysis to characterize the deformation mode affecting Silurian strata at a sub-seismic scale (i.e. below the seismic vertical resolution). Published palaeothickness maps were used to estimate the pre-deformation thickness of partly eroded Carboniferous rocks. The results of cross-section restoration were then compared to the subsidence modelling carried out for one deep well. The study revealed that during Late Carboniferous shortening, a thick layer of Silurian shales played the role of detachment level, above which brittle Devonian-Carboniferous strata were folded and thrust. The lateral extent of thin-skinned deformation was controlled by the presence of a step in the basement and the pinching out of the Silurian strata. In the northwestern part of the Lublin Basin, the Kock Fault Zone acted as a region of strain concentration, where Silurian shales were tectonically thickened, and shows a ductile style of deformation resembling the mushwad structures of the Appalachian fold-and-thrust belt.
Rocznik
Strony
175--194
Opis fizyczny
Bibliogr. 75 poz., rys., wykr.
Twórcy
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
Bibliografia
  • 1. Allen, P. A. & Allen, J. R., 2005. Basin Analysis: Principles and Applications. Second Edition. Blackwell Publishing, Malden, 549 pp.
  • 2. Antonowicz, L., Hooper, R. & Iwanowska, E., 2003. Lublin Syncline as a result of thin-skinned Variscan deformation (SE Poland). Przegląd Geologiczny, 51: 344-350. [In Polish, English summary.]
  • 3. Antonowicz, L. & Iwanowska, E., 2004. Thin-skinned tectonics of the Lublin Basin. Przegląd Geologiczny, 52: 128-130. [In Polish.]
  • 4. Baldwin, B. & Butler, C. O., 1985. Compaction curves. American Association of Petroleum Geologists Bulletin, 69: 622-626.
  • 5. Barrier, L., Nalpas, T., Gapais, D. & Proust, J.-N., 2013. Impact of synkinematic sedimentation on the geometry and dynamics of compressive growth structures: insights from analogue modelling. Tectonophysics, 608: 737-752.
  • 6. BasinMod 2-D, 2019. BasinMod® 2-D. https://www.platte. com/docman-files/fact-sheets/13-basinmod-2-d-1/file.html [04.06.2019.]
  • 7. Bilowa, J., 1981. Identification of reflection seismics boundaries with the use of seismic well logs in the Terebiń area. Geological Quarterly, 25: 571-580. [In Polish, with English summary.]
  • 8. Bogdanova, S. V., Bingen, B., Gorbatschev, R., Kheraskova, T. N., Kozlov, V. I., Puchkov, V. N. & Volozh, Y. A., 2008. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160: 23-45.
  • 9. Botor, D., Kotarba, M. & Kosakowski, P., 2002. Petroleum generation in the Carboniferous strata of the Lublin Trough (Poland): an integrated geochemical and numerical modelling approach. Organic Geochemistry, 33: 461-476.
  • 10. Central Geological Database, 2019. Central Geological Database. http://baza.pgi.gov.pl [04.06.2019.]
  • 11. CGG, 2019. Geosoftware Resources. https://www.cgg.com/en/What-We-Do/GeoSoftware/GeoSoftware-Resources [04.06.2019.]
  • 12. Costa, E. & Vendeville, B. C., 2002. Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic décollement. Journal of Structural Geology, 24: 1729-1739.
  • 13. Cotton, J. T. & Koyi, H., 2000. Modelling of thrust fronts above ductile and frictional detachments: Application to structures in the Salt Range and Potwar Plateau, Pakistan. Geological Society of America Bulletin, 112: 351-363.
  • 14. Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M & van Wess, J.-D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195.
  • 15. Deep Time Maps, 2019. Deep Time Maps™, map of ancient Earth. http://deeptimemaps.com/ [04.06.2019.]
  • 16. Dooley, T. P. & Schreurs, G., 2012. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results. Tectonophysics, 574-575: 1-71.
  • 17. Dziewińska, L. & Jóźwiak, W., 2000. Lithological variation of the Carboniferous data in the Lublin Trough in the light geophysical interpretation. Biuletyn Państwowego Instytutu Geologicznego, 392: 5-48. [In Polish, with English summary.]
  • 18. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds), 2012. The Geological Time Scale 2012. Elsevier, Amster- dam-Boston, 1176 pp.
  • 19. Kaczyński, J., 1984. Perspektywy ropogazonośności Lubelszczyzny. Przegląd Geologiczny, 32: 330-333. [In Polish.] IHS Kingdom, 2019. Documentation (PDF versions). http://productdownloads.ihs.com/Documentation/Kingdom/2018/ KingdomDocuments_2018.zip [04.06.2019.]
  • 20. Krzywiec, P., 2007. Nowe spojrzenie na tektonikę regionu lubelskiego (SE Polska) oparte na wynikach interpretacji danych sejsmicznych. Biuletyn Państwowego Instytutu Geologicznego, 422: 1-18. [In Polish, with English summary.]
  • 21. Krzywiec, P., 2009. Devonian-Cretaceous repeated subsidence and uplift along the Teisseyre-Tornquist zone in SE Poland - insight from seismic data interpretation. Tectonophysics, 475: 142-159.
  • 22. Krzywiec, P., Gągała, Ł., Mazur, S., Słonka, Ł., Kufrasa, M., Malinowski, M., Pietsch, K. & Golonka, J., 2017a. Variscan deformation along the Teisseyre-Tornquist Zone in SE Poland: thick-skinned structural inheritance or thin-skinned thrusting? Tectonophysics, 718: 83-91.
  • 23. Krzywiec, P., Gutowski, J., Walaszczyk, I., Wróbel, G. & Wybraniec, S., 2009. Tectonostratigraphic model of the Late Cretaceous inversion along the Nowe Miasto-Zawichost Fault Zone, SE Mid-Polish Trough. Geological Quarterly, 53: 27-48.
  • 24. Krzywiec, P., Mazur, S., Gągała, Ł., Kufrasa, M., Lewandowski, M., Malinowski, M. & Buffenmyer, V., 2017b. Late Carboniferous thin-skinned compressional deformation above the SW edge of the East European craton as revealed by seismic reflection and potential field data - Correlations with the Variscides and the Appalachians. The Geological Society of America Memoir, 213: 353-372.
  • 25. Krzywiec, P., Poprawa, P., Mikołajczak, M., Mazur, S. & Malinowski, M., 2018a. Deeply concealed half-graben at the SW margin of the East European Craton (SE Poland) - evidence for Neoproterozoic rifting prior to the break-up of Rodinia. Journal of Paleogeography, 7: 88-97.
  • 26. Krzywiec, P., Stachowska, A. & Stypa, A., 2018b. The only way is up - on Mesozoic uplifts and basin inversion events in SE Poland. In: Kilhams, B., Kukla, P. A., Mazur, S., McKie, T., Mijnlieff, H. F. & van Ojik, K. (eds), Mesozoic Resource Potential in the Southern Permian Basin. Geological Society, London, Special Publications, 469: 33-57.
  • 27. Kufrasa, M., Krzywiec, P. & Słonka, Ł., 2017. Model paleozoicznej ewolucji tektonicznej SE Polski (blok radomsko-kraśnicki i basen lubelski) w oparciu o wyniki interpretacji danych sejsmicznych. In: Golonka, J. & Bębenek, S. (eds), Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów. Arka, pp. 337-355. [In Polish.]
  • 28. Kufrasa, M., Słonka, Ł., Krzywiec, P., Dzwinel, K. & Zacharski, J., 2018. Fracture pattern of the Lower Paleozoic sedimentary cover in the Lublin Basin of southeastern Poland derived from seismic attribute analysis and structural restoration. Interpretation, 6: SH73-SH89.
  • 29. Kusznir, N. J., Stovba, S. M., Stephenson, R. A. & Poplavskii, K. N., 1996. The formation of the northwestern Dniepr-Donets Basin: 2-D forward and reverse syn-rift and post-rift modelling. Tectonophysics, 268: 237-255.
  • 30. Mazur, S., Gągała, Ł., Kufrasa, M. & Krzywiec, P., 2018. Application of two-dimensional gravity models as input parameters to balanced cross-sections across the margin of the East European Craton in SE Poland. Journal of Structural Geology, 116: 223-233.
  • 31. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M. & Buffenmyer, V, 2016. Pomeranian Caledonides, NW Poland - a collisional suture or thin-skinned fold-and-thrust belt? Tectonophysics, 692: 29-43.
  • 32. Modliński, Z. (ed.), 2010. Paleogeological atlas of the sub-Permian Paleozoic of the East-European Craton in Poland and neighbouring areas. Polish Geological Institute, Warsaw.
  • 33. Move, 2019. Move Documentation. https://www.mve.com/resources/move-documentation [04.06.2019.]
  • 34. Narkiewicz, M., 2003. Tektoniczne uwarunkowania rowu lubelskiego (dewon-karbon). Przegląd Geologiczny, 51: 771-776. [In Polish, with English summary.]
  • 35. Narkiewicz, M., 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly, 51: 231-256.
  • 36. Narkiewicz, M., 2011. Lithostratigraphy, depositional systems and transgressive-regressive cycles in the Devonian of the Lublin Basin (south-eastern Poland). Prace Państwowego Instytutu Geologicznego, 196: 53-146. [In Polish, with English summary.]
  • 37. Narkiewicz, M., Jarosiński, M. & Krzywiec, P., 2007a. Diagenetic and tectonic processes controlling reservoir properties of the Frasnian dolostones in the central part of the Lublin Graben (Eastern Poland). Przegląd Geologiczny, 55: 61-70. [In Polish, with English summary.]
  • 38. Narkiewicz, M., Jarosiński, M., Krzywiec, P. & Waksmundzka, M. I., 2007b. Regionalne uwarunkowania rozwoju i inwersji basenu lubelskiego w dewonie i karbonie. Biuletyn Państwowego Instytutu Geologicznego, 422: 19-34. [In Polish, with English summary.]
  • 39. Narkiewicz, M., Maksym, A., Malinowski, M., Grad, M., Guterch, A., Petecki, Z., Probulski, J., Janik, T., Majdański, M., Środa, P., Czuba, W., Gaczyński, E. & Jankowski, L., 2015. Transcurrent nature of the Teisseyre-Tornquist Zone in Central Europe: results of the P0LCRUST-01 deep reflection seismic profile. International Journal of Earth Sciences, 104: 775-796.
  • 40. Narkiewicz, M. & Narkiewicz, K., 2008. The mid-Frasnian subsidence pulse in the Lublin Basin (SE Poland): sedimentary record, conodont biostratigraphy and regional significance. Acta Geologica Polonica, 58: 287-301.
  • 41. Narkiewicz, M., Narkiewicz, K. & Turnau, E., 2011. Rozwój sedymentacji dewońskiej w basenie łysogórsko-radomskim i lubelskim. Prace Państwowego Instytutu Geologicznego, 196: 289-318. [In Polish, with English summary.]
  • 42. Nikishin, A., Ziegler, P., Stephenson, R., Cloetingh, S., Furne, A., Fokin, P., Ershov, A., Bolotov, S., Korotaev, M., Alekseev, A., Gorbachev, V., Shipilov, E., Lankreijer, A., Bembinova, E. & Shalimov, I., 1996. Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophysics, 268: 23-63.
  • 43. Pacześna, J., 2006. Evolution of late Neoproterozoic rift depocentres and facies in the Lublin-Podlasie sedimentary basin. Prace Państwowego Instytutu Geologicznego, 186: 1-29. [In Polish, with English summary.]
  • 44. Pacześna, J., 2010. The evolution of late Ediacaran riverine-estuarine system in the Lublin-Podlasie slope of the East European Craton, southeastern Poland. Polish Geological Institute Special Papers, 27: 1-96.
  • 45. Pacześna, J., 2014. Lithostratigraphy of the Ediacaran deposits in the Lublin-Podlasie sedimentary basin (eastern and southeastern Poland). Biuletyn Państwowego Instytutu Geologicznego, 460: 1-24. [In Polish, with English summary.]
  • 46. Pacześna, J. (ed.), 2007. Profile Głębokich Otworów Wiertniczych PIG - Busówno IG-1. Państwowy Instytut Geologiczny, Warszawa, 218 pp. [In Polish, with English summary.]
  • 47. Pashin, J. C., Kopaska-Merkel, D. C., Arnold, A. C., McIntyre, M. R. & Thomas, W. A., 2012. Gigantic, gaseous mushwads in Cambrian shale: Conasauga Formation, southern Appalachians, USA. International Journal of Coal Geology, 103: 70-91.
  • 48. Pelc, T., 1999. Dewońsko-karboński diapiryzm sylurskich utworów ilastych basenu lubelskiego. ,Geofizyka w geologii, górnictwie i ochronie środowiska’. V Konferencja Naukowo- Techniczna, Kraków, 137-142. [In Polish.]
  • 49. Pepel, A., 1974. Reflectors as established by vertical seismic profiling in the northern and central part of the Lublin Graben. Geological Quarterly, 18: 850-864.
  • 50. Pharaoh, T. C., Dusar, M., Geluk, M. C., Kockel, F., Krawczyk, C. M., Krzywiec, P., Scheck-Wenderoth, M., Thy bo, H., Vejbæk, O. V. & van Wees, J.-D., 2010. Tectonic evolution. In: Doornenbal, J. C. & Stevenson, A. G. (eds), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp. 25-57.
  • 51. Pichot, T. & Nalpas, T., 2009. Influence of synkinematic sedimentation in a thrust system with two decollement levels; analogue modelling. Tectonophysics, 473: 466-475.
  • 52. Poprawa, P., 2006a. Neoproterozoic break-up of the supercontinent Rodinia/Pannotia recorded by development of sedimentary basins at the western slope of Baltica. Prace Państwowego Instytutu Geologicznego, 186: 165-188. [In Polish, with English summary.]
  • 53. Poprawa, P., 2006b. Development of the Caledonian collision zone along the western margin of Baltica and its relation to the foreland basin. Prace Państwowego Instytutu Geologicznego, 186: 189-214. [In Polish, with English summary.]
  • 54. Pożaryski, W. & Dembowski, Z., 1983. Geological Map of Poland and Neighboring Countries without Cenozoic, Mesozoic and Permian Deposits, 1:1000000. Geological Institute, Warsaw. [In Polish.]
  • 55. Remin, Z., Gruszczyński, M. & Marshall, J. D., 2016. Changes in paleo-circulation and the distribution of ammonite faunas at the Coniacian-Santonian transition in central Poland and western Ukraine. Acta Geologica Polonica, 66: 107-124.
  • 56. Rivero, C. & Shaw, J. H., 2011. Active folding and blind thrust faulting induced by basin inversion processes, Inner California Borderlands. In: Shaw, J. & Suppe, J. (ed.), Thrust fault-related folding. American Association of Petroleum Geologists Memoir, 94: 187-214.
  • 57. Scheck-Wenderoth, M., Krzywiec, P., Zülke, R., Maystrenko, Y & Frizheim, N., 2008. Permian to Cretaceous tectonics. In: McCann, T. (ed.), The Geology of Central Europe. Volume II: Mesozoic and Cenozoic. Geological Society, London, pp. 999-1030.
  • 58. Schlische, R. W., Withjack, M. O. & Eisenstadt, G., 2002. An experimental study of the secondary deformation produced by oblique-slip normal faulting. American Association of Petroleum Geologists Bulletin , 86: 885-906.
  • 59. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. & Ustaszewski, K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101: 139-183.
  • 60. Smit, J. H.W., Brun, J. P. & Sokoutis, D., 2003. Deformation of brittle-ductile thrust wedges in experiments and nature. Journal of Geophysical Research, 108: 2480.
  • 61. Stampfli, G. M., Hochard, C., Verard, C., Wilhem, C. & von Raumer, J., 2013. The formation of Pangea. Tectonophysics, 593: 1-19.
  • 62. Stephenson, R. A., Narkiewicz, M., Dadlez, R., van Wees, J-D. & Andriessen, P., 2003. Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156: 59-70.
  • 63. Stovba, S. M. & Stephenson, R. A., 1999. The Donbas Foldbelt: its relationships with the uninverted Donets segment of the Dniepr-Donets Basin, Ukraine. Tectonophysics, 313: 59-83.
  • 64. Stypa, A., Krzywiec, P., Kufrasa, M. & Słonka, Ł., 2017. Analiza krzywych subsydencji tektonicznej na obszarze basenu lubelskiego. In: Golonka, J. & Bębenek, S. (eds), Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów. Arka, Cieszyn, pp. 372-380. [In Polish.]
  • 65. Suppe, J., 2009. Mass balance and thrusting in detachment fold. American Association of Petroleum Geologists Memoir, 94: 1-16.
  • 66. Thomas, W. A., 2001. Mushwad: Ductile duplex in the Appalachian thrust belt in Alabama. American Association of Petroleum Geologists Bulletin, 85: 1847-1869.
  • 67. Thomas, W. A., 2007a. Balancing tectonic shortening in contrasting deformation styles through a mechanically heterogeneous stratigraphic succession. Geological Society of America Special Paper, 433: 227-290.
  • 68. Thomas, W. A., 2007b. Role of the Birmingham Basement Fault in thin-skinned thrusting of the Birmingham Anticlinorium, Appalachian Thrust Belt in Alabama. American Journal of Science, 307: 46-62.
  • 69. Thomas, W. A., 2018 (in press). Evolution of the concept and structure of a MUSHWAD. Journal of Structural Geology. Doi: https://doi.org/10.1016/jjsg.2018.05.001.
  • 70. Tomaszczyk, M., 2015. Ewolucja tektoniczna centralnej części basenu lubelskiego. Unpublished PhD Dissertation, Polish Geological Institute, 129 pp. [In Polish.]
  • 71. Tomaszczyk, M. & Jarosiński, M., 2017. The Kock Fault Zone as an indicator of tectonic stress regime changes at the margin of the East European Craton (Poland). Geological Quarterly, 61: 908-925.
  • 72. Van Hinte, J. E., 1978. Geohistory analysis - application of micropaleontology in exploration geology. American Association of Petroleum Geologists Bulletin, 62: 201-222.
  • 73. Woodward, N. B., Boyer, S. E. & Suppe, J. (eds), 1989. Balanced Geological Cross-Sections: An Essential Technique in Geological Research and Exploration. Short Course in Geology 6: 132 pp. AGU, Washington, D.C.
  • 74. Wu, J.E. & McClay, K.R., 2011. Two-dimensional analog modeling of fold and thrust belts: Dynamic interactions with syncontractional sedimentation and erosion. In: Shaw, J. & Suppe, J. (eds), Thrust fault-related folding. American Association of Petroleum Geologists Memoir, 94: 301-333.
  • 75. Ziegler, P. A. 1990. Geological Atlas of Western and Central Europe, 2nd Edition. Shell International Petroleum Maatschappij B.V. and Geological Society Publishing House, Bath, 239 pp.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0d0e19e-3e15-49a2-999c-1c136d1b2893
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.