PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Erbium and Al2O3 nanocrystals-doped silica optical fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fibre lasers and inherently rare-earth-doped optical fibers nowadays pass through a new period of their progress aiming at high efficiency of systems and their high power. In this paper, we deal with the preparation of silica fibers doped with erbium and Al2O3 nanocrystals and the characterization of their optical properties. The fibers were prepared by the extended Modified Chemical Vapor Deposition (MCVD) method from starting chlorides or oxide nanopowders. Conventional as well as modified approaches led to a nanocrystalline mullite phase formation in the fiber cores in which erbium is dissolved. The proposed modified approach based on starting nanopowders led to improved geometry of preforms and fibers and consequently to the improvement of their background attenuation. Such nanocrystal -doped fibers can be used for ASE sources. Further improvement of fiber optical properties can be expected.
Rocznik
Strony
641--646
Opis fizyczny
Bibliogr. 27, rys., wykr.
Twórcy
autor
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
autor
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
autor
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
autor
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
autor
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
autor
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
autor
  • Institute of Photonics and Electronics of the ASCR, 57 Chaberska St., 18251, Prague 8, CR
autor
  • Central Glass and Ceramics Research Institute, 196 Raja Mullick Rd., Kolkata, 700032, India
Bibliografia
  • [1] S.B. Poole, D.N. Payne, R.J. Mears, M.E. Fermann, and R.I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions”, J. Lightwave Technology LT-4 (7), 870-876 (1986).
  • [2] E. Desurvier, J.R. Simpson, and P.C. Becker, “High-gain erbium-doped travelling-wave fiber amplifier”, Optics Letters 12 (11), 888-890 (1987)
  • [3] M.J.F. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers, Marcel Dekker, New York, 2001.
  • [4] C.J. Koester and E. Snitzer, “Amplification in a fiber laser”, Applied Optics 3 (10), 1182-1186 (1964).
  • [5] Y. Jeong, J.K. Sahu, D.N. Payne, and J. Nilsson, “Ytterbiumdoped large-core fibre laser with 1.36 kW continuous-wave output power”, Optics Express 12 (25), 6088-6092 (2004).
  • [6] D.N. Payne, Y. Jeong, J. Nilsson, J.K. Sahu, D.B. S. Soh, C. Algeria, P. Dupriez, C.A. Codemard, V.N. Philippov, and V. Hernandez, “Kilowatt-class single-frequency fiber sources”, Proc. SPIE 5709, 133-141 (2005).
  • [7] V.P. Gapontsev, “Advances and opportunities in fiber lasers” SPIE Photonics 1, CD-ROM (2013).
  • [8] P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined 20 W at 2000 nm from a pair of thulium-doped fiber lasers”, Laser Phys. Lett. 10 (9), 095104-095105 (2013).
  • [9] J.E. Townsend, S.B. Poole, and D.N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres”, Electronics Letters 23 (7), 329-331 (1987).
  • [10] B.J. Ainslie, S.P. Craig, S.T. Davey, and B. Wakefield, “The fabrication, assessment and optical properties of highconcentration Nd3+ and Er3+ - doped silica-based fibers”, Materials Letters 6 (5-6), 139-144 (1988).
  • [11] O. Sysala, I. Kasik, and I. Spejtkova, “Preparation of preforms and optical fibres containing aluminum by the solution-doping method”, Ceramics-Silikaty 35 (4), 363-367 (1991).
  • [12] A.L.G. Carter, S.B. Poole, and M.G. Sceats, “Flashcondensation technique for the fabrication of high-phosphoruscontent rare-earth-doped fibers”, Electronics Letters 28 (21), 2009-2011 (1992).
  • [13] G.G. Vienne, J.E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D.N. Payne, “Fabrication and characterization of Yb3+: Er3+ phosphosilicate fibers for lasers”, J. Lightwave Technology 16 (11), 1990-2000 (1998).
  • [14] D. DiGiovanni, R. Shubochkin, T.F. Morse, and B. Lenardic, “Rare earth - doped fibers”, in Specialty Optical Fibers Handbook, ed. A. Mendez, T.F. Morse, Chapt. 7, Elsevier, Amsterdam, 2007.
  • [15] M.M. Bubnov, V.N. Vechkanov, A.N. Gur’yanov, K.V. Zotov, D.S. Lipatov, M.E. Likhachev, and M.V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core”, Inorganic Materials 45 (4), 444-449(2009).
  • [16] J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V.Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers”, Proc. SPIE 7598, 75980B (2010).
  • [17] A. Dhar, S. Das, and H.S. Maiti, “Fabrication of high aluminium containing rare-earth doped fiber without core-clad interface defects”, Optics Communications 283 (11), 2344-2349 (2010).
  • [18] B. Dussardier, J. Maria, and P. Peterka, “Passively Q-switched ytterbium- and chromium-doped all-fibre laser”, Applied Optics 50 (25), E20-E23 (2011).
  • [19] D. Dorosz, J. Zmojda, and M. Kochanowicz, “Investigation on broadband near-infrared emission in Yb3+/Ho3+ co-doped antimony-silicate glass and optical fiber”, Optical Materials 35 (12), 2577-2580 (2013).
  • [20] J. Zmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre”, Bull. Pol. Ac.: Tech. 59 (4), 381-387 (2011).
  • [21] A. Lin, S. Boo, S. Moon, H. Jeong, Y. Chung, and W.T. Han, “Luminescence enhancement by Au nanoparticles in Er3+ - doped germano-silicate optical fibre”, Optics Express 15 (14), 8603-8608 (2007).
  • [22] P.R. Watekar, S. Ju, and W.T. Han, “Optical properties of the alumino-silicate glass doped with Er-ions/Au particles”, Colloids and Surfaces: Physicochemical and Engeneering Aspects.Special Issue A 313, 492-496 (2008).
  • [23] S. Moon, A. Lin, B.H. Kim, P.R. Watekar, and W.T. Han, “Linear and nonlinear optical properties of the optical fibre doped with silicon nano-particles”, J. Non-Crystalline Solids 354 (2-9), 602-606 (2008).
  • [24] J. Mrazek, L. Spanhel, G. Chadeyron, and V. Matejec, “Evolution and Eu3+ doping of Sol-gel derived ternary ZnxTiyOz - nanocrystals”, J. Physical Chemistry C 114, 2843-2852 (2010).
  • [25] J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fibre lasers”, Optical Engineering 50 (11), 111605 (2011).
  • [26] A. Dhar, I. Kasik, B. Dussardier, O. Podrazky, and V. Matejec, “Preparation and properties of Er-doped ZrO2 nanocrystalline phase-separated preforms of optical fibres by MCVD process”, Int. J. Applied Ceramic Technology 9, 341-348(2012).
  • [27] O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers”, Physica Status Solidi - Current Topics In Solid State Physics C 6, 2228-2230 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0cce47f-a4eb-40ae-924d-361ca7a8d379
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.