Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Roundabouts, as an unsignalized intersection, have an effective preventative measure designed to control straight-line crashes. Efficient traffic flow in cities depends upon appropriate capacity estimation of roundabouts. This study attempts to develop models for roundabout entry capacity by applying Artificial Neural Network (ANN) analysis for mixed traffic flow conditions. Data was gathered from 27 roundabouts spread across India. The influence area for gap acceptance (INAGA) concept was used as a graphical method to identify critical gap (Tc) of entry flow at roundabouts. This study indicated that the Bayesian Regularisation Neural Network (BRNN) based model has the best R2 and RMSE of 0.97 and 167.8. The connection weight approach and Garson algorithm evaluate the significance of each explanatory variable and identify follow-up time (Tf) as a critical parameter with values of 11.10 and 21.15%, respectively.
Rocznik
Tom
Strony
209--226
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Department of Civil and Environmental Engineering, Research Scholar, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
autor
- Department of Civil and Environmental Engineering, Research Scholar, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
Bibliografia
- 1. Yap Yok Hoe, Helen M Gibson, Ben J Waterson. 2013. “An International Review of Roundabout Capacity Modelling”. Transport Reviews 33(5): 593-616. DOI: https://doi.org/10.1080/01441647.2013.830160.
- 2. Hamim Omar Faruqe, Md. Saddam Hossain, Md. Hadiuzzaman. 2022. “Developing Empirical Model with Graphical Tool to Estimate and Predict Capacity of Rural Highway Roundabouts”. International Journal of Transportation Science and Technology 11(4): 726-737. DOI: https://doi.org/10.1016/j.ijtst.2021.10.002.
- 3. Ahmad Abdullah, Rajat Rastogi. 2016. “Regression model for entry capacity of a roundabout under mixed traffic condition – an Indian case study”. Transportation Letters 9(5): 243-257. DOI: https://doi.org/10.1080/19427867.2016.1203603.
- 4. Qu Xiaobo, Jin Zhang, Shuaian Wang, Zhiyuan Liu. 2014. “Modelling follow up time at a single-lane roundabout”. Journal of Traffic and Transportation Engineering 1(2): 97-102. DOI: https://doi.org/10.1016/S2095-7564(15)30093-3.
- 5. Fortuijn Lambertus G.H. 2009. “Turbo Roundabouts: Estimation of Capacity”. Transportation Research Record 2130(1): 83-92. DOI: https://doi.org/10.3141/2130-11.
- 6. Valdez Marilyn, Ruey Long Cheu, Carlos Duran. 2011 “Operations of Modern Roundabout with Unbalanced Approach Volumes”. Transportation Research Record 2265(1): 234-243. DOI: https://doi.org/10.3141/2265-26.
- 7. Karlaftis M.G., E.I. Vlahogianni. 2011. “Statistical methods versus neural networks in transportation research: Differences, similarities and some insights”. Transportation Research Part C: Emerging Technologies 19(3): 387-399. DOI: https://doi.org/10.1016/j.trc.2010.10.004.
- 8. Özuysal M., S.P. Çalışkanelli, S. Tanyel, T. Baran. 2004. “Capacity prediction for traffic circles: applicability of ANN”. Proceedings of the Institution of Civil Engineers – Transport 162(4): 195-206. ISSN: 0965-092X. E-ISSN: 1751-7710. DOI: https://doi.org/10.1680/tran.2009.162.4.195.
- 9. Anagnostopoulos Apostolos, Fotini Kehagia, Georgios Aretoulis. 2022. “Application of Artificial Neural Network for Modelling and Predicting Roundabout Capacity”. In: Road Safety & Simulation International Conference. National Technical University of Athens Road Safety Observatory, Hellenic Institute of Transportation Engineers. 08-10 June 2022. Athens, Greece.
- 10. Patnaik Ashish Kumar, Yadu Krishna, Shweta Rao, Prashant Kumar Bhuyan. 2017. “Development of Roundabout Entry Capacity Model Using INAGA Method for Heterogeneous Traffic Flow Conditions”. Arab J Sci Eng 42(9): 4181-4199. DOI: https://doi.org/10.1007/s13369-017-2677-x.
- 11. Mauro Raffaele. 2010. Calculation of Roundabouts: Capacity, Waiting Phenomena and Reliability. Berlin, Heidelberg: Springer Berlin. ISBN 978-3-642-04550-9.
- 12. Ghanizadeh Ali Reza, Nasrin Heidarabadizadeh, Farhang Jalali. 2020. “Artificial neural network back-calculation of flexible pavements with sensitivity analysis using Garson’s and connection weights algorithms”. Innov. Infrastruct. Solut. 5(2): 63. DOI: https://doi.org/10.1007/s41062-020-00312-z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0ca6276-11c0-4daf-bcac-8293a771cc8f