Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, [Beta]-galactosidase enzyme from Kluyveromyces fragilis was immobilised on a commercial polyethersulfone membrane surface, 10 kDa cut-off. An integrated process, concerning the simultaneous hydrolysis–ultrafiltration of whey lactose was studied and working conditions have been fixed at 55[degrees]C and pH 6.9, the same conditions that are used for the industrial process of protein concentration. For the immobilisation, best results were obtained using 5% (v/v) of glutaraldehyde solution and 0.03 M galactose; the total activity recovery coefficient (TARC) was 44.2%. The amount of immobilised enzyme was 12.49 mg with a total activity of 86.3 LAU at 37[degrees]C, using 5% (w/v) lactose solution in phosphate buffer (100 mM pH 6.9). The stability of the immobilised enzyme was approximately 585 fold higher in comparison with the stability of free enzyme. Multipoint covalent immobilisation improves the stability of the enzyme, thereby enhancing the decision to use the membrane as a filtering element and support for the enzyme immobilisation.
Czasopismo
Rocznik
Tom
Strony
375--385
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Instituto de Desarrollo Tecnológico para la Industria Química – INTEC (Universidad Nacional del Litoral – CONICET). Güemes 3450, (S3000GLN) Santa Fe, Argentina
autor
- Instituto de Desarrollo Tecnológico para la Industria Química – INTEC (Universidad Nacional del Litoral – CONICET). Güemes 3450, (S3000GLN) Santa Fe, Argentina
autor
- Instituto de Desarrollo Tecnológico para la Industria Química – INTEC (Universidad Nacional del Litoral – CONICET). Güemes 3450, (S3000GLN) Santa Fe, Argentina
Bibliografia
- 1. Axelsson A., Zacchi G., 1990. Economic evaluation of the hydrolysis of lactose using immobilized [beta]-galactosidase. Appl. Biochem. Biotechnol., 24/25, 679-693 DOI: 10.1007/BF02920288.
- 2. Becker V., Evans H., 1969. The influence of monovalent cations and hydrostatic pressure on [beta]-galactosidase activity. Biochimica et Biophisica Acta, 191, 95-104.
- 3. Belleville M.P., Lozano P., Iborra J.L., Rios G.M., 2001. Progress in enzymatic membrane reactors: A review. Sep. Purif. Technol., 25, 229-233 DOI: 10.1016/j.memsci.2003.06.004.
- 4. Bernal V., Pavel J., 1985. Lactose hydrolysis by Kluyveromices lactis [beta]-D-galactosidase in skim milk, whey, permeate and model system. Canadian Inst. Food Sci. Technol. J., 18, 97-99. DOI: 10.1016/S03155463(85)71728-2.
- 5. Blanco R.M., Calvete J.J., Guisán J.M., 1989. Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine) - agarose (aldehyde) multipoint attachment. Enzyme Microbial Technol., 11, 353-359. DOI: 10.1016/0141-0229(89)90019-7.
- 6. Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochem., 72, 248-254. DOI: 10.1016/00032697(76)90527-3.
- 7. Carminatti C.A., Cunha Petrus J.C., Marques Porto L., 2003. Hidrólise enzimática da lactose em reator a membrana. Anais do XIV Simpósio Nacional de Fermentaçoes, Florianópolis, Brasil.
- 8. Cheryan M., 1998. Ultrafiltration and microfiltration handbook. Technomic Publishing Company, Inc., Lancaster, USA.
- 9. Foda M.I., López-Leiva M.H., 2000. Continuous production of oligosaccharides from whey using a membrane reactor. Process Biochem., 35, 581-587. DOI: 10.1016/S0032-9592(99)00108-9.
- 10. Fu J., Tseng Y., 1990. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl. Environ. Microbiol., 56, 919-923.
- 11. Fujikawa H., Itoh T., 1997. Differences in the thermal inactivation kinetics of Escherichia coli ß-galactosidase in vitro and in vivo. Biocontrol Sci., 2, 73-78. DOI: 10.4265/bio.2.73.
- 12. Gekas V., López-Leiva M., 1985. Hydrolysis of lactose: A literature review. Process Biochem., 20, 1-12.
- 13. Giorno L., Drioli E., 2000. Biocatalytic membrane reactors: applications and perspectives. Trends in Biotechnol., 18, 339-349. DOI: 10.1016/S0167-7799(00)01472-4.
- 14. Gonzalez Siso M.I., 1996. The biotechnological utilization of cheese whey: A Review. Bioresource Technol., 57, 1-11. DOI: 10.1016/0960-8524(96)00036-3.
- 15. Guadix A., Camacho F., Guadix E.M., 2006. Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor. J. Food Eng., 72, 398-405. DOI: 10.1016/j.jfoodeng.2004.12.022.
- 16. Guisan J.M., 2006. Immobilization of enzymes and cells. 2nd Ed., Humana Press, Totowa, New Yersey, USA.
- 17. Heng M.H., Glatz C.E., 1994. Ion exchange immobilization of charged ß-galactosidase fusions for lactose hydrolysis. Biotechnol. Bioeng., 44, 745-752. DOI: 10.1002/bit.260440611.
- 18. Henley J.P., Sadana A., 1986. Deactivation theory. Biotechnol. Bioeng., 28, 1277-1285. DOI: 10.1002/bit.260280821.
- 19. Huang Y., Yang S., 1998. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnol. Bioeng., 60, 498-507 DOI: 10.1002/(SICI)10970290(19981120)60:4<498::AID-BIT12>3.0.CO;2-E.
- 20. Kim I.H., Chang H.N., 1983. Variable-volume hollow-fiber enzyme reactor with pulsatile flow. AIChE J., 29, 910-914. DOI: 10.1002/aic.690290606.
- 21. Ladero M., Perez M.T., Santos A., Garcia-Ochoa F., 2003. Hydrolysis of lactose by free and immobilized beta-galactosidase from Thermus sp. strain T2. Biotechnol. Bioeng., 81, 241-252. DOI: 10.1002/bit.10466.
- 22. Lamas E.M, Barros R.M, Balcao V.M., Malcata F.X., 2001. Hydrolysis of whey proteins by proteases extracted from Cynara cardunculus and immobilized onto highly activated supports. Enzyme Microbial Technol., 28, 642-652. DOI: 10.1016/S0141-0229(01)00308-8.
- 23. Mannheim A., Cheryan M., 1990. Continuous hydrolysis of milk protein in a membrane reactor. J. Food Sci., 55, 381-385. DOI: 10.1111/j.1365-2621.1990.tb06769.x.
- 24. Martin-Orue C., Henry G., Bouhallab S., 1999. Tryptic hydrolysis of .-caseinomacropeptide: control of the enzymatic reaction in a continuous membrane reactor. Enzyme and Microbial Technol., 24, 173-180. DOI: 10.1016/S0141-0229(98)00100-8.
- 25. Mawson A.J., 1994. Bioconversions for whey utilization and waste abatement. Bioresource Technol., 47, 195-203. DOI: 10.1016/0960-8524(94)90180-5.
- 26. Novalin S., Neuhaus W., Kulbe K., 2005. A new innovative process to produce lactose-reduced skim milk. J. Biotechnol., 119, 212-218. DOI: 10.1016/j.jbiotec.2005.03.018.
- 27. Perea A., Ugalde U., 1996. Continuous hydrolysis of whey proteins in a membrane recycle reactor. Enzyme Microbial Technol., 18, 29-34. DOI: 10.1016/0141-0229(96)00046-4.
- 28. Pivarnik L.F., Senecal A.G., Rand A.G., 1995. Hydrolytic and transgalactosylic activities of commercial [beta]galactosidase (lactase) in food processing. Adv. Food Nutrition Res., 38, 1-10. DOI: 10.1016/S10434526(08)60083-2.
- 29. Prata-Vidal M., Bouhallab S., Henry G., Aimar P., 2001. An experimental study of caseinomacropeptide hydrolysis by trypsin in a continuous membrane reactor. Biochem. Eng. J., 8, 195-202. DOI: 10.1016/S1369703X(01)00103-6.
- 30. Richmond M.L., Gray J.I., Stine C.M., 1981. [beta]-Galactosidase: Review of recent research, related to technological application, nutritional concerns and immobilization. J. Dairy Sci., 64, 1759-1771. DOI: 10.3168/jds.S00220302(81)82764-6.
- 31. Rios G.M., Belleville M.P., Paolucci D., Sanchez J., 2004. Progress in enzymatic membrane reactors – a review. J. Mem. Sci., 242, 189-196. DOI: 10.1016/j.memsci.2003.06.004.
- 32. Sadana A., Henley J.P., 1987. Single-step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol. Bioeng., 30, 717-723. DOI: 10.1002/bit.260300604.
- 33. Sadana A., 1991. Biocatalysis: Fundamentals of enzyme deactivation kinetics. Prentice Hall, New Jersey, USA.
- 34. Sienkiewicz T., Riedel C.L., 1990. Whey and whey utilization. Verlag Th. Mann, Gelsenkirchen-Baer, Germany.
- 35. Sousa Jr. R., Lopes G.P., Pinto G.A., Almeida P.I.F., Giordano R.C., 2004. GMC-fuzzy control of pH during enzymatic hydrolysis of cheese whey proteins. Computers Chem. Eng., 28, 1661-1672. DOI: 10.1016/j.compchemeng.2004.01.001.
- 36. Splechtna B., Petzelbauer I., Kuhn B., Kulbe K.D., Nidetzky, B., 2002. Hydrolysis of lactose by beta-glycosidase CelB from hyperthermophilic archaeon Pyrococcus furiosus: comparison of hollow-fiber membrane and packedbed immobilized enzyme reactors for continuous processing of ultrahigh temperature treated skim milk. Appl. Biochem. Biotechnol., 98, 473-488.
- 37. Sungur S., Yildirim Ö., 1999. Batch and continuous hydrolysis of lactose using ß-galactosidase immobilized on gelatin-CMC. Polymer-Plastics Technol. Eng., 38, 821-829. DOI: 10.1080/03602559909351616.
- 38. Tardioli P.W., Sousa Jr. R., Giordano R.C., Giordano R.L.C., 2005. Kinetic model of the hydrolysis of polypeptides catalyzed by Alcalase immobilized on 10% glyoxyl-agarose. Enzyme Microbial Technol., 36, 555-564. DOI: 10.1016/j.enzmictec.2004.12.002.
- 39. Walsh M.K., Swaisgood H.E., 1993. Characterization of a chemically conjugated ß-galactosidase bioreactor. J. Food Biochem., 17, 283-292. DOI: 10.1111/j.1745-4514.1993.tb00473.x.
- 40. Werner W., Rey H.G., Weilinger H., 1970. On the properties of a new chromagen for determination of glucose in the blood according to the GOD/POD method. Zeitschrift fur Analytische Chemie, 252, 224.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0be1358-4e97-400b-a1d2-e2e8a3504d8d