PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New technologies using renewable energy in road construction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy harvesting consists in the processing and storage of energy which is normally dissipated to the ambient environment. This study presents two solutions using two methods of energy generation: conversion of solar energy into electricity on the road surface and energy recovery from road surface vibrations and displacements. The description of configuration of testing stand dedicated for road surface vibrations energy harvesting has been also included. Described testing stand will make it possible to verify the possibility of application of piezoelectric transducers in road pavement in terms of occurrence of damages and the value of generated energy.
Słowa kluczowe
Twórcy
autor
  • Lublin University of Technology, Department of Structural Mechanics Poland, 20-618 Lublin, ul. Nadbystrzycka 40
autor
  • Lublin University of Technology, Institute of Electrical Engineering and Electro-technologies, Poland, 20-618 Lublin, ul. Nadbystrzycka 38A
Bibliografia
  • 1. Algra Group AG. 2016. Piezo - the exclusive touch. http://www.algragroup.ch/wp-content/uploads/2016/02/Piezo_EN.pdf, retrieved 02.02.2017.
  • 2. Bardaweel H., Hattamleh O. A., Richards R., Bahr D., Richards C. 2006. A Comparison of piezoelectric materials for MEMS power generation. Proceedings of The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Nov. 29 - Dec. 1, 2006, Berkeley, U.S.A.
  • 3. Barry K. 2014. This Parking Lot Is Paved with Solar Panels. Wired, https://www.wired.com/2014/05/solar-road, retrieved 24.05.2014.
  • 4. Chen C., Zhai Y., Li F., Tan F., Yue G., Zhang W., Wang M. 2017. High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer. Journal of Power Sources, Vol. 341, 396-403.
  • 5. Colas Group. 2016. First ever US Wattway solar road installed in Georgia. Press release, Boulogne, December 20.
  • 6. Colas Group. 2016. Wattway: first trial section in western France. Press release, La Roche-sur-Yon, June 2.
  • 7. Colas Group. 2017. Wattway media library. http://www.wattwaybycolas.com/en/#, date of access 2017.03.19.
  • 8. Duarte F., Ferreira A., Champalimaud J. 2015. Waynergy Vehicles - An Innovative Pavement Energy Harvest System. Proceeding of 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014). Springer Proceedings in Energy. Springer, 343-348.
  • 9. EC Electronics. 2014. Short theory of piezoelectricity. http://www.e-spawalnik.pl/?krotka-teoria-piezoelektrycznosci,263, retrieved 06.01.2017 (in Polish).
  • 10. Föll H. 2011. Electronic materials. Piezo Electricity and Related Effects. http://www.tf.uni-kiel.de/matwis/amat/elmat_en/, retrieved 06.02.2017.
  • 11. Giurgiutiu V.,Zagrai A., Bao J. J. 2002. Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring. Structural Health Monitoring, Vol. I, Nr 1, 41-61.
  • 12. Gozdek J. 2015. The Spring Novelties. Chip, 4, 20-25 (in Polish).
  • 13. Guo L., Lu Q. 2017. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renewable and Sustainable Energy Reviews, Vol. 72, 761-773.
  • 14. Han F., Luo J., Wan Z., Liu X., Jia C. 2017. Dissolution-recrystallization method for high efficiency perovskite solar cells. Applied Surface Science, Vol. 408, 34-37.
  • 15. Holovchuk A., Kovalyshyn S., Habriyel Yu., Zholobko V. 2015. Computerised system of research of automobile and tractor engines. Econtechmod, Vol 4, 4, 55-58.
  • 16. Ikeda T. 1996. Fundamentals of Piezoelectricity. Oxford University Press, pp. 263.
  • 17. Jaffe E., 2015. Google's New Self-Driving Car Is About to Hit the Streets. CityLab, http://www.citylab.com/tech/2015/05/googles-new-self-driving-car-is-about-to-hit-the-streets/393323.
  • 18. Jiménez F.J., Vázquez-Rodriguez M., Alonso D., de Frutos J. 20017. Virtual instrument to obtain an optimal linear model for piezoelectric elements involved in road traffic energy harvesting. Computer Standards & Interfaces, Vol. 51, 1-13.
  • 19. Jung I., Shin Y., Kim S., Choi J., Kang C. 2017. Flexible piezoelectric polymer-based energy harvesting system for roadway applications. Applied Energy, Vol. 197, 222-229.
  • 20. Kalabińska M., Piłat J., Radziszewski P. 2003. Technology of Materials and Paving. Oficyna Wydawnicza Politechniki Warszawskiej, pp. 292 (in Polish).
  • 21. Korn J. 2015. Computer: The Sorcerer's Apprentice. Chip, 9, 108-111 (in Polish).
  • 22. Kymissis J., Kendall C., Paradiso J., Gershenfeld N. 1998. Parasitic Power Harvesting in Shoes. Digest of Papers. Second IEEE International Conference on Wearable Computers, 132-139.
  • 23. Lamont L. A. 2013. Third generation photovoltaic (PV) cells for eco-efficient buildings and other applications. Nanotechnology in Eco-Efficient Construction, 270-296.
  • 24. Lee S-G., Kim S-D. 2005. Piezoelectric vibrator with multi acting vibrator. Patent, publication number WO2006059856 A1.
  • 25. Lewandowski W. M. 2006. Proecological sources of energy. WNT, pp. 432 (in Polish).
  • 26. Li X., Strezov V. 2014, Modelling piezoelectric energy harvesting potential in an educational building. Energy Conversion and Management, Vol. 85, 435-442.
  • 27. Lorenc H. 2005. Atlas of climate in Poland, IMiGW, Warszawa (in Polish).
  • 28. Marvin I. 2012. Solar insolation. http://solarinsolation.org/, retrieved 16.02.2017.
  • 29. Mazowiecka Agencja Energetyczna. 2017. Solar energy. http://www.mae.com.pl/odnawialne-zrodla-energii-energia-sloneczna.html, date of access 2017.01.24 (in Polish).
  • 30. Midé Technology Corporation. 2017. PPA products. Datasheet & User Manual. Rev. no. 003, 01-27-2017, http://info.mide.com/hubfs/ppa-piezo-product-datasheet.pdf, retrieved 20.02.2017.
  • 31. Patterson T. 2011. Solar-powered "smart" roads could zap snow, ice. CNN-Building America, http://edition.cnn.com/2011/TECH/innovation/01/19/smart.roads, publication date 19.01.2011.
  • 32. Rajamanickam N., Soundarrajan P., Jayakumar K., Ramachandran K. 2017. Improve the power conversion efficiency of perovskite BaSnO3 nanostructures based dye-sensitized solar cells by Fe doping. Solar Energy Materials and Solar Cells, Vol. 166, 69-77.
  • 33. Sodano H. A., Inman D.J. Gyuhae P. 2005. Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. Journal of Intelligent Material Systems and Structures, Vol. 16, Nr 10, 799-807.
  • 34. Solar Roadways. 2017. Welcome to Solar Roadways. http://www.solarroadways.com/Home/Index, retrieved 16.02.2017.
  • 35. Stavens D. M. 2011. Learning to Drive: Perception For Autonomous Cars. Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University, http://purl.stanford.edu/pb661px9942.
  • 36. Stryczewska D. 2102. Renewable energies. Overview of technology and applications. Lublin University of Technology, pp. 161 (in Polish).
  • 37. Varinsky D. 2016. Snow-melting solar roads are being tested publicly for the first time in the US. Business Insider, http://www.businessinsider.com/solar-road-panels-first-public-test-2016-10?IR=T, publication date 05.10.2016.
  • 38. Wei C., Jing X. 2017. A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, Vol. 74, 1-18.
  • 39. Willeke G.P., Räuber A.. 2012. On The History of Terrestrial PV Development: With a Focus on Germany Semiconductors and Semimetals. Vol. 87, 7-48.
  • 40. Wolański R. 2016. Every car will be able do it in five years. Chip 3, 106-107 (in Polish).
  • 41. Woodford C. 2016. Solar cells. http://www.explainthatstuff.com/solarcells.html.
  • 42. Zasada K., Krawczuk M. 2010. Generating energy using piezoelectric materials. PAK, Vol. 56, Nr 5, 445-449 (in Polish).
  • 43. Zhuk M., Kovalyshyn V., Tcir R. 2015. Defining Duration of Driver Reaction Time Components Using the NeuroCom Complex. Econtechmod, Vol. 4, 2, 39-44
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0bd18e1-bd20-46ec-a943-71572bd8b7e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.