PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of aerosol optical depth over Pakistan using novel hybrid machine learning model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impact of aerosols on health includes both long-term chronic irritation and inflammation of the respiratory tract. Aerosol optical depth (AOD), a crucial optical parameter that assesses the extinction effect of atmospheric aerosols, is frequently used to estimate the extent of air pollution on large scales. So, the better prediction of AOD is crucial for understanding the health impacts of aerosols. The accurate prediction of AOD is difficult due to its nonlinear relationships with other climatic variables, uncertainties, and time series variable characteristics. In this paper, a machine learning (ML) model such as support vector regression (SVR), novel hybrid SVR-GWO model (SVR integrated with gray wolf optimizer (GWO)), and statistical model multi-linear regression (MLR) are used to predict AOD. Also, for SVR-GWO model, SVR hyper-parameters are optimized using meta-heuristic GWO algorithm. Satellite-based data of Pakistan is used for the prediction of AOD on monthly bases. In addition, preprocessing techniques of forward feature selection (FFS) is utilized to select the optimal input features for the SVR-GWO, SVR and MLR models to predict AOD. The performance of the novel hybrid SVR-GWO, SVR, and MLR model is analyzed using RMSE, MAE, RRMSE, R2 and Taylor diagram, and it is found that hybrid SVR-GWO model (RMSE = 0.07, MAE = 0.06, RRMSE = 0.22 and R2=0.60) is better than ordinary SVR model (RMSE = 0.10, MAE = 0.07, RRMSE = 0.29 and R2=0.18) and MLR model (RMSE = 0.11, MAE = 0.07, RRMSE = 0.32 and R2=0.03). Keynotes: (a) The study demonstrates the potential of ML models such as SVR-GWO for accurate prediction of AOD, which can aid in better understanding of the health impacts of aerosols. (b) The use of preprocessing techniques like FFS and optimization algorithms like GWO can significantly improve the performance of the ML (SVR-GWO) model in predicting AOD. (c) The findings of this study can be useful for policymakers and healthcare professionals in identifying regions and populations at risk of aerosol-induced respiratory health issues and designing effective interventions to mitigate them.
Czasopismo
Rocznik
Strony
2009--2029
Opis fizyczny
Bibliogr. 85 poz., rys., tab.
Twórcy
autor
  • College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
autor
  • College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan
autor
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
  • Department of Space Science, University of the Punjab, Lahore, Pakistan
Bibliografia
  • 1. Aghelpour P, Guan Y, Bahrami-pichaghchi H, Mohammadi B, Kisi O, Zhang D (2020) Using the modis sensor for snow cover modeling and the assessment of drought effects on snow cover in a mountainous area. Remote Sensing 12(20):1–22. https://doi.org/10.3390/rs12203437
  • 2. Alade IO, Abd Rahman MA, Saleh TA (2019) Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model. Nano-Struct Nano-Objects 17:103–111. https://doi.org/10.1016/j.nanoso.2018.12.001
  • 3. Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Scheike T, Loft S (2007) Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J Eposure Sci Environ Epidemiol 17(7):625–636. https://doi.org/10.1038/sj.jes.7500546
  • 4. Antanasijevi DZ, Pocajt VV, Povrenovi DS, Risti MĐ, Peri AA (2013) Science of the total environment PM 10 emission forecasting using arti fi cial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. https://doi.org/10.1016/j.scitotenv.2012.10.110
  • 5. Arden Pope C, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, Gapstur SM, Thun MJ (2011) Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: Shape of the exposure-response relationships. Environ Health Perspect 119(11):1616–1621. https://doi.org/10.1289/ehp.1103639
  • 6. Bai Y, Wu L, Qin K, Zhang Y, Shen Y, Zhou Y (2016) A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD. Remote Sensing 8(3). https://doi.org/10.3390/rs8030262
  • 7. Bansal N, Defo M, Lacasse MA (2021) Application of support vector regression to the prediction of the long-term impacts of climate change on the moisture performance of wood frame and massive timber walls. Buildings 11(5). https://doi.org/10.3390/buildings11050188
  • 8. Boser BE, Vapnik VN, Guyon IM (1992) Training algorithm margin for optimal classifiers. Perception, pp 144–152.
  • 9. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Tager I (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109(21):2655–2671. https://doi.org/10.1161/01.CIR.0000128587.30041.C8
  • 10. Cao Y, Shao L, Jones T, Oliveira MLS, Ge S, Feng X, Silva LFO, BéruBé K (2021) Multiple relationships between aerosol and COVID-19: a framework for global studies. Gondwana Res 93:243–251. https://doi.org/10.1016/j.gr.2021.02.002
  • 11. Cetisli B, Edizkan R (2011) Estimation of adaptive neuro-fuzzy inference system parameters with the expectation maximization algorithm and extended Kalman smoother. Neural Comput Appl 20(3):403–415. https://doi.org/10.1007/s00521-010-0406-4
  • 12. Chen Y, Shi R, Shu S, Gao W (2013) Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis. Atmos Environ 74:346–359. https://doi.org/10.1016/j.atmosenv.2013.04.002
  • 13. Chen G, Li S, Knibbs LD, Hamm NAS, Cao W, Li T, Guo J, Ren H, Abramson MJ, Guo Y (2018) A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci Total Environ 636:52–60. https://doi.org/10.1016/j.scitotenv.2018.04.251
  • 14. Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F, Parvinnezhad D (2019) Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol 572:435–448. https://doi.org/10.1016/j.jhydrol.2019.03.013
  • 15. Choubin B, Malekian A (2017) Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environ Earth Sci 76(15):1–10. https://doi.org/10.1007/s12665-017-6870-8
  • 16. Chu HJ, Bilal M (2019) PM 2.5 mapping using integrated geographically temporally weighted regression (GTWR) and random sample consensus (RANSAC) models. Environ Sci Pollut Res 26(2):1902–1910. https://doi.org/10.1007/s11356-018-3763-7
  • 17. Circ RP, (Who) WHO, Xie S-H, Liu A-L, Chen Y-Y, Zhang L, Zhang H-J, Jin B-X, Lu W-Q, Li X-Y, Lu W-Q, White Pa, Rasmussen JB, Blaise C, Xie S-H, Liu A-L, Chen Y-Y, Zhang L, Lu W-Q (2010) DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China. Environ Mol Mutagen 51(3):229–235. https://doi.org/10.1002/em.20537
  • 18. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Arden Pope 3rd, Shin L, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MHC (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389(10082):1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
  • 19. Dockery DW (2001) Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 109(SUPPL. 4):483–486. https://doi.org/10.1289/ehp.01109s4483
  • 20. Dynamics S, Song X, Zhao S, Cai W (2015) Grey Wolf Optimizer for parameter estimation in surface waves. March 2020. https://doi.org/10.1016/j.soildyn.2015.04.004
  • 21. Elbayoumi M, Ramli NA, Md Yusof NFF, Yahaya AS, Bin AM, Ul-Saufie AZ (2014) Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings. Atmos Environ 94:11–21. https://doi.org/10.1016/j.atmosenv.2014.05.007
  • 22. Elmeddahi Y, Ragab R (2022) Prediction of the groundwater quality index through machine learning in Western Middle Cheliff plain in North Algeria. Acta Geophys 70(4):1797–1814. https://doi.org/10.1007/s11600-022-00827-2
  • 23. Ewees AA, Elaziz MA (2020) Improved adaptive neuro-fuzzy inference system using gray wolf optimization: a case study in predicting biochar Yield. J Intell Syst 29(1):924–940. https://doi.org/10.1515/jisys-2017-0641
  • 24. Farhat NH (1992) Photonit neural networks and learning mathines the role of electron-trapping materials. IEEE Expert-Intell Syst Appl 7(5):63–72. https://doi.org/10.1109/64.163674
  • 25. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl 30(2):413–435. https://doi.org/10.1007/s00521-017-3272-5
  • 26. Fernando HJS, Mammarella MC, Grandoni G, Fedele P, Di Marco R, Dimitrova R, Hyde P (2012) Forecasting PM 10 in metropolitan areas: efficacy of neural networks. Environ Pollut 163:62–67. https://doi.org/10.1016/j.envpol.2011.12.018
  • 27. Freire RZ, Dos Santos GH, Dos Santos Coelho L (2017) Hygrothermal dynamic and mould growth risk predictions for concrete tiles by using Least Squares Support Vector Machines. Energies 10(8):1–16. https://doi.org/10.3390/en10081093
  • 28. Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., Zhang, D., Yao, W., Zhou, Z., & Guo, L. (2021). Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Science of the Total Environment, 778. https://doi.org/10.1016/j.scitotenv.2021.146288
  • 29. Hadadi F, Moazenzadeh R, Mohammadi B (2022) Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence. J Hydrol, 609. https://doi.org/10.1016/j.jhydrol.2022.127774
  • 30. He Q, Huang B (2018) Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environ Pollut 236:1027–1037. https://doi.org/10.1016/j.envpol.2018.01.053
  • 31. Huang J, Mendoza B, Daniel JS, Nielsen CJ, Rotstayn L, Wild O (2013) Anthropogenic and natural radiative forcing. In: Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 9781107057, pp 659–740. https://doi.org/10.1017/CBO9781107415324.018
  • 32. Huang Y, Zhang J, Tze Ann F, Ma G (2020) Intelligent mixture design of steel fibre reinforced concrete using a support vector regression and firefly algorithm based multi-objective optimization model. Construct Build Mater 260:120457. https://doi.org/10.1016/j.conbuildmat.2020.120457
  • 33. Ji G, Tian L, Zhao J, Yue Y, Wang Z (2019) Detecting spatiotemporal dynamics of PM2.5 emission data in China using DMSP-OLS nighttime stable light data. J Clean Prod 209:363–370. https://doi.org/10.1016/j.jclepro.2018.10.285
  • 34. Jian L, Zhao Y, Zhu YP, Zhang MB, Bertolatti D (2012) An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci Total Environ 426:336–345. https://doi.org/10.1016/j.scitotenv.2012.03.025
  • 35. Kang Y, Kim M, Kang E, Cho D, Im J (2022) Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia. ISPRS J Photogrammetry Remote Sensing 183(September 2021):253–268. https://doi.org/10.1016/j.isprsjprs.2021.11.016
  • 36. Kelly FJ, Fussell JC (2012) Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 60:504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039
  • 37. Kelly FJ, Fussell JC (2015) Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health 37(4):631–649. https://doi.org/10.1007/s10653-015-9720-1
  • 38. Kohavi R, John GH (1998) The wrapper approach. Feature Extraction Construct Selection, pp 33–50. https://doi.org/10.1007/978-1-4615-5725-8_3
  • 39. Konovalov IB, Beekmann M, Meleux F, Dutot A, Foret G (2009) Combining deterministic and statistical approaches for PM10 forecasting in Europe. Atmos Environ 43(40):6425–6434. https://doi.org/10.1016/j.atmosenv.2009.06.039
  • 40. Learning with Kernels (2005) Support vector machines, regularization, optimization, and beyond. IEEE Trans Neural Networks 16(3):781–781. https://doi.org/10.1109/tnn.2005.848998
  • 41. Lee CF, Lee JC, Lee AC (1999) Multiple linear regression. Stat Bus Financial Econ, pp 652–699. https://doi.org/10.1142/9789812816214_0015
  • 42. Leuenberger M, Parente J, Tonini M, Pereira MG, Kanevski M (2018) Wildfire susceptibility mapping: deterministic vs. Stochastic approaches. Environ Model Softw 101:194–203. https://doi.org/10.1016/j.envsoft.2017.12.019
  • 43. Lin K, Pai P, Yang S (2011) Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms. Appl Math Comput 217(12):5318–5327. https://doi.org/10.1016/j.amc.2010.11.055
  • 44. Liu R, Peng J, Leng Y, Lee S, Panahi M, Chen W, Zhao X (2021) Hybrids of support vector regression with grey wolf optimizer and firefly algorithm for spatial prediction of landslide susceptibility. Remote Sensing 13(24). https://doi.org/10.3390/rs13244966
  • 45. Lu L (2015) Optimal $\gamma$ and $C$ for $\epsilon$-Support Vector Regression with RBF Kernels. 1–13. http://arxiv.org/abs/1506.03942
  • 46. Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T (2018) Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ Model Softw 101:1–9. https://doi.org/10.1016/j.envsoft.2017.12.001
  • 47. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  • 48. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  • 49. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039
  • 50. Moazenzadeh R, Mohammadi B, Shamshirband S, Chau KW (2018) Coupling a firefly algorithm with support vector regression to predict evaporation in northern iran. Eng Appl Comput Fluid Mech 12(1):584–597. https://doi.org/10.1080/19942060.2018.1482476
  • 51. Mohammadi B, Guan Y, Aghelpour P, Emamgholizadeh S, Zolá RP, Zhang D (2020) Simulation of titicaca lake water level fluctuations using hybrid machine learning technique integrated with grey wolf optimizer algorithm. Water (switzerland) 12(11):1–18. https://doi.org/10.3390/w12113015
  • 52. Mohammadi B, Mehdizadeh S (2020) Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric Water Manage 237(March):106145. https://doi.org/10.1016/j.agwat.2020.106145
  • 53. Myhre G, Samset BH, Schulz M, Balkanski Y, Bauer S, Berntsen TK, Bian H, Bellouin N, Chin M, Diehl T, Easter RC, Feichter J, Ghan SJ, Hauglustaine D, Iversen T, Kinne S, Kirkeväg A, Lamarque JF, Lin G et al (2013) Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys 13(4):1853–1877. https://doi.org/10.5194/acp-13-1853-2013
  • 54. Niu M, Sun S, Wu J, Yu L, Wang J (2016) An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting. Appl Math Model 40(5–6):4079–4093. https://doi.org/10.1016/j.apm.2015.11.030
  • 55. Ortega JC, Fu JS, Reed GD, Chow JC, Dı LA, Watson JG, Moncadaherrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco. Chile 42:8331–8340. https://doi.org/10.1016/j.atmosenv.2008.07.020
  • 56. Pai T, Ho C, Chen S, Lo H, Sung P (2011) Using Seven Types of GM ( 1 , 1 ) model to forecast hourly particulate matter concentration in Banciao City of Taiwan, pp 25–33. https://doi.org/10.1007/s11270-010-0564-0
  • 57. Panahi M, Dodangeh E, Rezaie F, Khosravi K, Van Le H, Lee MJ, Lee S, Thai Pham B (2021) Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena 199(December 2020):105114. https://doi.org/10.1016/j.catena.2020.105114
  • 58. Parrella F (2007) Online support vector regression. A Thesis Presented for the Degree of Information, June. http://eris.liralab.it/viki/images/8/82/OnlineSVR_Thesis.pdf%5Cnpapers2://publication/uuid/F8ECFACC-3A60-4318-BCB5-A9CF812F5AED
  • 59. Paschalidou AK, Karakitsios S, Kleanthous S, Kassomenos PA (2011) Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18(2):316–327. https://doi.org/10.1007/s11356-010-0375-2
  • 60. Qin S, Liu F, Wang J, Sun B (2014) Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2014.09.046
  • 61. Razavi Termeh SV, Kornejady A, Pourghasemi HR, Keesstra S (2018) Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ 615:438–451. https://doi.org/10.1016/j.scitotenv.2017.09.262
  • 62. Seposo X, Kondo M, Ueda K, Honda Y, Michikawa T, Yamazaki S, Nitta H (2018) Health impact assessment of PM2.5-related mitigation scenarios using local risk coefficient estimates in 9 Japanese cities. Environ Int 120(July):525–534. https://doi.org/10.1016/j.envint.2018.08.037
  • 63. She L, Zhang HK, Bu Z, Shi Y, Yang L, Zhao J (2022) A deep-neural-network-based aerosol optical depth (AOD) retrieval from Landsat-8 Top of Atmosphere Data. Remote Sensing 14(6). https://doi.org/10.3390/rs14061411
  • 64. Simoni M, Baldacci S, Maio S, Cerrai S, Sarno G, Viegi G (2015) Adverse effects of outdoor pollution in the elderly. J Thorac Dis 7(1):34–45. https://doi.org/10.3978/j.issn.2072-1439.2014.12.10
  • 65. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Statistics Comput 14(3):199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  • 66. Song Y, Qin S, Qu J, Liu F (2015) The forecasting research of early warning systems for atmospheric pollutants: a case in Yangtze River Delta region. Atmos Environ 118:58–69. https://doi.org/10.1016/j.atmosenv.2015.06.032
  • 67. Suárez Sánchez A, García Nieto PJ, Riesgo Fernández P, del Coz Díaz JJ, Iglesias-Rodríguez FJ (2011) Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Math Comput Model 54(5–6):1453–1466. https://doi.org/10.1016/j.mcm.2011.04.017
  • 68. Sun J, Veefkind P, Nanda S, Van Velthoven P, Levelt P (2019) The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations. Atmos Meas Tech 12(12):6319–6340. https://doi.org/10.5194/amt-12-6319-2019
  • 69. Tariq S, Mehmood S, Nisa A, Ul-Haq Z, Mehmood U (2021) Remote sensing of aerosol properties during intense smog events over Lahore (Pakistan). Kuwait J Sci 48(4). https://doi.org/10.48129/KJS.V48I4.10407
  • 70. Taylor KE (2001) In a Single Diagram 106:7183–7192.
  • 71. UNO (2018) World Urbanization Prospects. In: Demographic Research, vol. 12. https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
  • 72. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM, Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira M F, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L et al (2004) Impacts of atmospheric aerosols and air pollution in Northern Eurasia and their dynamics. J Geophys Res 4(January):1089. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
  • 73. Voukantsis D, Karatzas K, Kukkonen J, Räsänen T (2011) Science of the Total Environment Intercomparison of air quality data using principal component analysis , and forecasting of PM 10 and PM 2. 5 concentrations using arti fi cial neural networks, in Thessaloniki and Helsinki. Sci Total Environ 409(7):1266–1276. https://doi.org/10.1016/j.scitotenv.2010.12.039
  • 74. Wang P, Liu Y, Qin Z, Zhang G (2015) A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci Total Environ 505:1202–1212. https://doi.org/10.1016/j.scitotenv.2014.10.078
  • 75. Wei J, Huang W, Li Z, Xue W, Peng Y, Sun L, Cribb M (2019) Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sensing Environ 231(May):111221. https://doi.org/10.1016/j.rse.2019.111221
  • 76. Wu B, Zhou M, Shen X, Gao Y, Silvera R, Yiu G (2013) Simple profile rectifications go a long way statistically exploring and alleviating the effects of sampling errors for program optimizations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7920 LNCS(97), pp 654–678. https://doi.org/10.1007/978-3-642-39038-8_27
  • 77. Xing YF, Xu YH, Shi MH, Lian YX (2016) The impact of PM2.5 on the human respiratory system. J Thoracic Dis 8(1):E69–E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
  • 78. Xue T, Zheng Y, Tong D, Zheng B, Li X, Zhu T, Zhang Q (2019) Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: a machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ Int 123(July 2018), 345–357. https://doi.org/10.1016/j.envint.2018.11.075
  • 79. Yang G, Tang R, Xiang G (2013) Multi-objective optimization algorithms design based on support vector regression metamodeling. TELKOMNIKA Indo J Electrical Eng 11(11):6406–6412
  • 80. Yang BY, Qian Z, (Min), Li S, Chen G, Bloom MS, Elliott M, Syberg KW, Heinrich J, Markevych I, Wang SQ, Chen D, Ma H, Chen DH, Liu Y, Komppula M, Leskinen A, Liu KK, Zeng XW, Hu LW, Guo Y, Dong GH (2018) Ambient air pollution in relations to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 Communities Chinese Health Study. Lancet Planetary Health 2(2):e64–e73. https://doi.org/10.1016/S2542-5196(18)30001-9
  • 81. Yao W, Zhang C, Hao H, Wang X, Li X (2018) A support vector machine approach to estimate global solar radiation with the influence of fog and haze. Renew Energy 128:155–162. https://doi.org/10.1016/j.renene.2018.05.069
  • 82. Zhai L, Li S, Zou B, Sang H, Fang X, Xu S (2018) An improved geographically weighted regression model for PM2.5 concentration estimation in large areas. Atmos Environ 181:145–154. https://doi.org/10.1016/j.atmosenv.2018.03.017
  • 83. Zhang H, Zhang W, Palazoglu A, Sun W (2012) Prediction of ozone levels using a Hidden Markov Model (HMM) with Gamma distribution. Atmos Environ 62:64–73. https://doi.org/10.1016/j.atmosenv.2012.08.008
  • 84. Zhang B, Li K, Hu Y, Ji K, Han B (2022) Prediction of backfill strength based on support vector regression improved by grey wolf optimization. J Shanghai Jiaotong Univ (Science). https://doi.org/10.1007/s12204-022-2408-7
  • 85. Zhang H, Li S, Chen G, Abdulai T, Liu X, Wang Y, Liang H, Hou J, Huo W, Mao Z, Wang C, Bie R (2020) Ambient air pollutants aggravate association of snoring with prevalent hypertension: results from the Henan Rural Cohort. Chemosphere 256:127108. https://doi.org/10.1016/j.chemosphere.2020.127108
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0ac5c3a-1984-43a2-8617-5a4ca94bdb98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.