PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coastal Water Properties and Hydrodynamic Processes in the Malacca Strait: Case Study Northeastern Coast of Sumatra, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic processes in the coastal waters play an important role in regulating the marine pollution distribution caused by riverine inputs and are relevant for coastal management. Here, the coastal water properties were investigated from field measurements and modeling hydrodynamic processes in the northeastern coast of Sumatra. The present study found that the river discharges affect a low salinity of 28–29 psu in the surface waters along near the coastal line. The river discharge might influence by strong La Niña with high rainfall in December 2010. However, the authors suggested that the effect of tidal mixing is stronger than the freshwater discharges, resulting in vertically well-mixed coastal waters in the region. The observed tidal range of 200 cm indicates a strong tidal mixing in the waters. The tidal elevation contributes more than 70% of the total measured sea elevation. The tidal current signal in which the flow pattern simulations show no significant differences among tide and wind-tide driven currents, is also dominant (77%).
Rocznik
Strony
16--29
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University, Jl. Agatis, Dramaga, Bogor, 16680, Indonesia
  • Department of Biology, Faculty of Mathematic and Natural Sciences, University of Sumatera Utara, Jl. Abdul Hakim No.1, Medan, 20155, Indonesia
  • Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Jakarta Utara, DKI Jakarta, 14430, Indonesia
  • Research Center for Oceanography, Earth Sciences Research Organization, National Research and Innovation Agency, Jl. Pasir Putih 1, Jakarta Utara, DKI Jakarta, 14430, Indonesia
Bibliografia
  • 1. Aldrian E., Dwi Susanto R. 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452.
  • 2. Blumberg A.F., Ali Khan L., St. John J.P. 1999. Three-dimensional hydrodynamic model of New York harbor region. Journal of Hydraulic Engineering, 125(8), 799–816.
  • 3. Blumberg A.F., Mellor G.L. 1987. A description of a three-dimensional coastal ocean circulation model. In: N. Heaps (Ed.) Three-Dimensional Coastal Ocean Models. American Geophysical Union, Washington, D.C., p. 1-16.
  • 4. Chen H., Malanotte-Rizzoli P., Koh T.Y., Song G. 2014. The relative importance of the wind-driven and tidal circulations in Malacca Strait. Continental Shelf Research, 88, 92–102.
  • 5. Chua T.E., Ross S.A., Yu H. 1997. Malacca Straits Environmental Profile. MPP-EAS Technical Report 10. Quezon City, Philipines.
  • 6. Corrège T. 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 408–428.
  • 7. Daryabor F., Ooi S.H., Samah A.A., Akbari A. 2016. Dynamics of the water circulations in the Southern South China Sea and its seasonal transports. PLoS ONE, 11(7).
  • 8. Deser C., Alexander M.A., Xie S.-P., Phillips A.S. 2010. Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115–143.
  • 9. Devlin A.T., Zaron E.D., Jay D.A., Talke S.A., Pan J. 2018. Seasonality of tides in Southeast Asian waters. Journal of Physical Oceanography, 48(5), 1169–1190.
  • 10. Durack P.J., Wijffels S.E. 2010. Fifty-Year trends in global ocean salinities and their relationship to broad-scale warming. Journal of Climate, 23(16), 4342–4362.
  • 11. Fingas M. 2018. Remote sensing for marine management.” World Seas: An Environmental Evaluation Volume III: Ecological Issues and Environmental Impacts, 103–119.
  • 12. Foreman M.G. 1977. Manual for Tidal Heights Analysis and Prediction. Pacific Marine Science Report Patricia Bay, Sidney, B.C., 77–10.
  • 13. Foreman M.G.G. 1978. Manual for tidal currents analysis and prediction. Pacific Marine Science Report Patricia Bay, Sidney, B.C., 78–6.
  • 14. Godin G. 1972. The Analysis of Tides. University of Toronto Press, Toronto, USA.
  • 15. Haditiar Y., Putri M.R., Ismail N., Muchlisin Z.A., Ikhwan M., Rizal S. 2020. Numerical study of tides in the Malacca Strait with a 3-D model. Heliyon, 6(9), e04828.
  • 16. Hii Y.S., Law A.T., Shazili N.A.M., Rashid M.K.A., Lokman H.M., Yusoff F.M., Ibrahim H.M. 2006. The strait of Malacca: Hydrological parameters, biological oxygen demand and total suspended solids. Journal of Sustainability Science and Management, 1, 1–14.
  • 17. Ibrahim Z.Z., Yanagi T. 2006. The influence of the Andaman Sea and the South China Sea on water mass in the Malacca Strait. Mer, 43–44(4–1), 33–42.
  • 18. Islam M.N., Maznah W.O.W. 2018. Biomonitoring Ecosystem Health: Current State of Malaysian Coastal Waters. Environmental Management of Marine Ecosystems, M. N. Islam and S. E. Jorgensen, eds., CRC Press, 287–305.
  • 19. Jaya I., Siregar V., Sondita M.F., and Rustandi Y. 1998. Marine and Coastal Resources Mapping for the Malacca Straits. International Maritime Organization (IMO), Quezon City, Philipines.
  • 20. Kowalik Z., Murty T.S. 1993. Numerical modeling of ocean dynamics. Advanced Series on Ocean Engineering Volume 5. World Scientific, Singapore – New Jersey – London – Hong Kong.
  • 21. Mellor G.L. 2002. Users guide for a three-dimensional, primitive equation, numerical ocean model. Ocean Modelling, 8544(June), 0710.
  • 22. Minhat F.I., Shaari H., Razak N.S.A., Satyanarayana B., Saelan W.N.W., Yusoff N.M., Husain M.L. 2020. Evaluating performance of foraminifera stress index as tropical-water monitoring tool in Strait of Malacca. Ecological Indicators, 111.
  • 23. Muhaimin A,A., Zaiton Ibr Z., Aizat Isma S. 2011. Water Mass Characteristics in the Strait of Malacca using Ocean Data View. Research Journal of Environmental Sciences, 5(1), 49–58.
  • 24. Osadchiev A., Medvedev I., Shchuka S., Kulikov M., Spivak E., Pisareva M., Semiletov I. 2020. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Science, 16(4), 781–798.
  • 25. Pang W.-C., Tkalich P. 2003. Modeling Tidal and Monsoon Driven Currents in the Singapore Strait. Singapore Maritime and Port Journal, 151–162.
  • 26. Pawlowicz R., Beardsley B., Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28(8), 929–937.
  • 27. Ramming H.G., Kowalik Z. 1980. Numerical Modelling of Marine Hydrodynamics. Elsevier Oceanography Series, Elsevier Science; 26.
  • 28. Rusli M.H.B.M. 2012. Protecting vital sea lines of communication: A study of the proposed designation of the Straits of Malacca and Singapore as a particularly sensitive sea area. Ocean and Coastal Management, 57, 79–94.
  • 29. Sangkoyo H., Adibroto T.A., Prionggo T., Setiawan D.R., Harahap D.N., Elfatih U., Faizal A. 2011. Pengembangan pusat keunggulan maritim – Selat Malaka menuju masyarakat berbasis pengetahuan. Penerbit Dewan Riset Nasional, Jakarta.
  • 30. Sulbakti R. 2016. Analisis Spasial Potensi Banjir pada DAS Belawan dengan menggunakan Sistem Informasi Geografis (SIG). Universitas Sumatera Utara.
  • 31. Susanto R.D., Pan J., Devlin A.T. 2019. Tidal mixing signatures in the Hong Kong coastal waters from satellite-derived sea surface temperature. Remote Sensing, 11(1).
  • 32. Tan C.K., Ishizaka J., Matsumura S., Yusoff F.M., Mohamed M.I.H. 2006. Seasonal variability of SeaWiFS chlorophyll a in the Malacca Straits in relation to Asian monsoon. Continental Shelf Research, 25(2), 168–178.
  • 33. Thia-Eng C., Gorre I.R.L., Adrian Ross S., Bernad S. R., Gervacio B., Corazon Ebarvia M. 2000. The Malacca Straits. Marine Pollution Bulletin, 41(1–6), 160–178.
  • 34. Tomczak M., Godfrey J.S. 1994. Regional oceanography: an introduction. Regional oceanography: an introduction, Daya Publishing House, New Delhi, India.
  • 35. Wu T., Wu H. 2018. Tidal Mixing Sustains a Bottom-Trapped River Plume and Buoyant Coastal Current on an Energetic Continental Shelf. Journal of Geophysical Research: Oceans, 123(11), 8026–8051.
  • 36. Wyrtki K. 1961. Physical Oceanography of South-east Asian Waters. University of California, Scripps Institution of Oceanography, La Jolla, CA.
  • 37. Zhang H., Madsen O.S., Sannasiraj S.A., Soon Chan E. 2004. Hydrodynamic model with wave-current interaction in coastal regions. Estuarine, Coastal and Shelf Science, 61(2), 317–324.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0a73ac8-52f7-4653-9167-f549ca162997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.