PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetoacoustic Heating of Plasma Caused by Periodic Magnetosound Perturbations with Discontinuities in a Quasi-Isentropic Magnetic Gas

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The magnetoacoustic heating of plasma by harmonic or periodic saw-tooth perturbations at a transducer is theoretically studied. The planar fast and slow magnetosound waves are considered. The wave vector may form an arbitrary angle θ with the equilibrium straight magnetic field. In view of variable θ and plasma-β, the description of magnetosound perturbations and appropriate magnetosound heating is fairly difficult. The scenario of heating depends not only on plasma-β and θ, but also on a balance between nonlinear attenuation at the shock front and inflow of energy into a system. Under some conditions, the average over the magnetosound period force of heating may tend to a positive or negative limit, tend to zero, or may remain constant when the distance from a transducer tends to infinity. Dynamics of temperature specifying heating differs in thermally stable and unstable cases and occurs unusually in the isentropically unstable flows.
Rocznik
Strony
241--251
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Ballai I. (2006), Nonlinear waves in solar plasmasa review, Journal of Physics: Conference Series, 44: 20-29, doi: 10.1088/1742-6596/44/1/003.
  • 2. Chin R., Verwichte E., Rowlands G., Nakariakov V. M. (2010), Self-organization of magnetoacoustic waves in a thermal unstable environment, Physics of Plasmas, 17 (32): 107-118.
  • 3. Field G. B. (1965), Thermal instability, The Astrophysical Journal, 142: 531-567, doi: 10.1086/148317.
  • 4. Freidberg J. P. (1987), Ideal magnetohydrodynamics, Plenum Press, New York.
  • 5. Geffen N. (1963), Magnetogasdynamic flows with shock waves, The Physics of Fluids, 6 (4): 566-571.
  • 6. Hamilton M., Morfey C. (1998), Model equations, [in:] Nonlinear acoustics, Hamilton M., Blackstock D. [Eds], pp. 41-63, Academic Press, New York.
  • 7. Kelly A., Nakariakov V. M. (2004), Coronal seismology by MHD autowaves, [in:] Proceedings of SOHO 13 Waves, Oscillations and Small-Scale Transients Events in the Solar Atmosphere: a joint view from SOHO and TRACE, Lacoste H. [Ed.], Vol. 547, pp. 483-488.
  • 8. Krall N. A., Trivelpiece A. W. (1973), Principles of plasma physics, McGraw Hill, New York.
  • 9. Leble S., Perelomova A. (2018), The dynami cal projectors method: hydro and electrodynamics, CRC Press.
  • 10. Makaryan V. G., Molevich N. E. (2007), Stationary shock waves in nonequilibrium media, Plasma Sources Science and Technology, 16 (1): 124-131, doi: 10.1088/0963-0252/16/1/017.
  • 11. Molevich N. E. (2001a), Amplification of vortex and temperature waves in the process of induced scattering of sound in thermodynamically nonequilibrium media, High Temperature, 39 (6): 884-888, doi: 10.1023/A:1013147207446.
  • 12. Molevich N. E. (2001b), Sound amplification in inhomogeneous flows of nonequilibrium gas, Acoustical Physics, 47 (1): 102-105, doi: 10.1134/1.1340086.
  • 13. Nakariakov V. M., Mendoza-Briceńo C. A., Ibáńez M. H. (2000), Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas, Astrophysical Journal, 528 (2): 767-775, doi: 10.1086/308195.
  • 14. Ojha S. N., Singh A. (1991), Growth and decay of sonic waves in thermally radiative magnetogasdynamics, Astrophysics and Space Science, 179 (1): 45-54.
  • 15. Osipov A. I., Uvarov A. V. (1992), Kinetic and gasdynamic processes in nonequilibrium molecular physics, Soviet Physics Uspekhi, 35 (11): 903-923.
  • 16. Parker E. N. (1953), Instability of thermal fields, The Astrophysical Journal, 117: 431-436.
  • 17. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357 (1): 42-4, doi: 10.1016/j.physleta.2006.04.0147.
  • 18. Perelomova A. (2010), Interaction of acoustic and thermal modes in the gas with nonequilibrium chemical reactions. Possibilities of acoustic cooling, Acta Acustica united with Acustica, 96 (1): 43-48, doi: 10.3813/AAA.918254.
  • 19. Perelomova A. (2012), Nonlinear influence of sound on vibrational energy of molecules in relaxing gas, Archives of Acoustics, 37 (1): 89-96.
  • 20. Perelomova A. (2014), Thermal self-action effects of acoustic beam in a vibrationally relaxing gas, Applied Mathematical Modelling, 38 (23): 5684-5691, doi: 10.1016/j.apm.2014.04.055.
  • 21. Perelomova A. (2016a), On the nonlinear effects of magnetoacoustic perturbations in a perfectly conducting viscous and thermo-conducting gas, Acta Physica Polonica A, 130 (3): 727-733, doi: 10.12693/APhysPolA.130.727.
  • 22. Perelomova A. (2016b), On the nonlinear distortions of sound and its coupling with other modes in a gaseous plasma with finite electric conductivity in a magnetic field, Archives of Acoustics, 41 (4): 691-699, doi: 10.1515/aoa-2016-0066.
  • 23. Perelomova A. (2018a), Magnetoacoustic heating in a quasi-isentropic magnetic gas, Physics of Plasmas, 25: 042116, doi: 10.1063/1.5025030.
  • 24. Perelomova A. (2018b) Magnetoacoustic heating in nonisentropic plasma caused by different kinds of heating-cooling function, Advances in Mathematical Physics, 2018: Article ID 8253210, 12 pages, doi: 10.1155/2018/8253210.
  • 25. Perelomova A. (2019), Propagation of initially saw-tooth periodic and impulsive signals in a quasi-isentropic magnetic gas, Physics of Plasmas, 26 (5): 052304, doi: 10.1063/1.5093390.
  • 26. Rosner R., Tucker W. H., Vaiana G. S. (1978), Dynamics of the quiescent solar corona, Astrophysical Journal, 220: 643-665, doi: 10.1086/155949.
  • 27. Rudenko O. V., Soluyan S. I. (1977), Theoretical foundations of nonlinear acoustics, Plenum, New York.
  • 28. Sharma V. D., Singh L. P., Ram R. (1987), The progressive wave approach analyzing the decay of a saw-tooth profile in magnetogasdynamics, Physics of Fluids, 30 (5): 1572-1574, doi: 10.1063/1.866222.
  • 29. Singh L. P., Singh R., Ram S. D. (2012), Evolution and decay of acceleration waves in perfectly conducting inviscid radiative magnetogasdynamics, Astrophysics and Space Science, 342 (2): 371-376, doi: 10.1007/s10509-012-1189-0.
  • 30. Van Doorsselaere T., Wardle N., Del Zanna G., Jansari K., Verwichte E., Nakariakov V. M. (2011), The first measurement of of the adiabatic index in the solar corona using time-dependent spectroscopy of HINODE/EIS observations, The Astrophysical Journal Letters, 727 (2): L32, doi: 10.1088/2041-8205/727/2/l32.
  • 31. Vesecky J. F., Antiochos S. K., Underwood J. H. (1979), Numerical modeling of quasi-static coronal loops. I – Uniform energy input, Astrophysical Journal, 233 (3): 987-997.
  • 32. Zavershinsky D. I., Molevich N. E. (2014), Alfvén wave amplification as a result of nonlinear interaction with a magnetoacoustic wave in an acoustically active conducting medium, Technical Physics Letters, 40 (8): 701-703, doi: 10.1134/S1063785014080288.
  • 33. Zavershinsky D. I., Molevich N. E., Ryashchikov D. S. (2015), Structure of acoustic perturbations in heat-releasing medium, Procedia Engineering, 106: 363-367, doi: 10.1016/j.proeng.2015.06.046.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0a5dfa3-8ff8-4d67-a5f7-43942051c409
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.