PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Solution Treatment on Mechanical Properties of Cast AZ91-(Ca) Alloys

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of solution treatment on room temperature mechanical properties were studied in cast AZ91 (Mg-9%Al-1%Zn-0.2%Mn) and AZ91-0.5%Ca alloys. In as-cast state, the Ca addition contributed to the suppression of discontinuous β phase precipitation and the formation of Al2 Ca phase. After solution treatment, the AZ91 alloy had only a small amount of Al8 Mn5 particles, while β and Al2 Ca phases were still present in the Ca-containing alloy. In as-cast state, the AZ91-0.5%Ca alloy showed better yield strength and hardness than the AZ91 alloy. The solution treatment increased the elongation in both alloys, which eventually led to the increase in ultimate tensile strength. The solution treatment resulted in a marked decrease in yield strength and hardness in the AZ91 alloy, whereas the decrements in those values were relatively negligible in the Ca-containing alloy due to the residual phases and solution hardening effect of Ca.
Twórcy
  • Korea Institute of Industrial Technology, Advanced Process and Materials R&D Group, Incheon 21999, Republic of Korea
Bibliografia
  • [1] B. L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).
  • [2] H. Friedrich, S. Schumann, J. Mater. Proc. Tech. 117, 276 (2001).
  • [3] A. Suzuki, N. D. Saddock, J. W. Jones, T. M. Pollock, Acta Mater. 53, 2823 (2005).
  • [4] S. W. Xu, N. Matsumoto, K. Yamamoto, S. Kamado, T. Honda, Y. Kojima, Mater. Sci. Eng. A 509, 105 (2009).
  • [5] Y. Terada, N. Ishimatsu, Y. Mori, T. Sato, Mater. Trans. 46, 145 (2005).
  • [6] B. Kondori, R. Mahmudi, Mater. Sci. Eng. A 527, 2014 (2010).
  • [7] W. Du, Y. Sun, X. Min, F. Xue, M. Zhu, D. Wu, Mater. Sci. Eng. A 356, 1 (2003).
  • [8] Y. Nakaura, A. Watanabe, K. Ohori, Mater. Trans. 47, 1031 (2006).
  • [9] Q. Wang, W. Chen, X. Zeng, Y. Lu, W. Ding, Y. Zhu, X. Xu, J. Mater. Sci. 36, 3035 (2001).
  • [10] Y. Mori, Y. Terada, T. Sato, Mater. Trans. 46, 1749 (2005).
  • [11] Y. Terada, N. Ishimatsu, T. Sato, Mater. Trans. 48, 2329 (2007).
  • [12] C. H. Caceres, C. J. Davidson, J. R. Griffiths, C. L. Newton, Mater. Sci. Eng. A 325, 344 (2002).
  • [13] Y. C. Lee, A. K. Dahle, D. H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000).
  • [14] S. Li, B. Tang, D. Zeng, J. Alloys Compd. 437, 317 (2007).
  • [15] H. Okamoto, Desk Handbook Phase Diagrams for Binary Alloys, ASM International, Ohio (2000). 36.
  • [16] H. Okamoto, Desk Handbook Phase Diagrams for Binary Alloys, ASM International, Ohio (2000). 27.
  • [17] X. Min, Y. Sun, G. Yuan, W. Du, F. Xue: Chin. J. Nonferr. Met. 12, 166 (2002).
  • [18] M. A. Gharghouri, G. C. Weatherly, J. D. Embury, J. Root, Phil. Mag. A 79, 1671 (1999).
  • [19] M. Song, Trans. Nonferrous Met. Soc. China 19, 1400 (2009).
Uwagi
EN
1. This study was supported by the Korea Institute of Industrial Technology (KITECH UR-18-0014).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0a4d12d-7098-4051-b5df-cc22afd9bffa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.