PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bödewadt flow and heat transfer of dusty fluid with Navier slip

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current work deals with two-phase flow and heat transfer induced by a mixture of fluid and dust particles revolving with a constant angular velocity above a slippage planar wall. Interaction of the solids with the fluid through an interaction force while rotating above the surface is formulated through a similarity system of equations akin to the Bödewadt flow in the absence of suspended particles. Although the velocity fields of fluid and solid are strictly coupled, the heat fields are decoupled from the velocity fields, but they are still in contact with each other due to the coupling of fluid and particle temperatures. The dusty fluid flow character is simulated numerically to capture the fluid and dust phase behaviors. The momentum and thermal layers are resolved in the presence of wall slip mechanism. Illustrative and quantitative results are eventually presented reflecting the physical features of particles and fluid at any stage of interaction during the rotary motion. It is revealed that the wall slip mechanism can be effective enough to alter the usual Bödewadt flow phenomenon.
Rocznik
Strony
157--172
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Department of Mathematics, Hacettepe University, 06532-Beytepe, Ankara, Turkey
  • Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
Bibliografia
  • 1. U.T. Bödewadt, Die Drehströmung über festem Grunde, Journal of Applied Mathematics and Mechanics (Zeitschrift für Angewandte Mathematik und Mechanik), 20, 241–253, 1940.
  • 2. C. Wang, L. Zhang, Z. Li, Z. Gao, J.J. Derksen, Multi-particle suspension in a laminar flow agitated by a Rushton turbine, Chemical Engineering Research and Design, 132, 831–842, 2018.
  • 3. M.T. Montgomery, H.D. Snell, Z. Yang, Axisymmetric spin-down dynamics of hurricane-like vortices, Journal of the Atmospheric Sciences, 58, 421–435, 2001.
  • 4. T. von Larcher, P.D. Williams, Modeling Atmospheric and Oceanic Flows: Insights From Laboratory Experiments and Numerical Simulations, John Wiley & Sons, London, 2014.
  • 5. M. Turkyilmazoglu, Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces, Physics of Fluids, 29, 013302, 2017.
  • 6. Y. Do, J.M. Lopez, F. Marques, Optimal harmonic response in a confined Bödewadt boundary layer flow, Physical Review E, 82, 036301, 2001.
  • 7. P.A. Davidson, A. Potherat, A note on Bödewadt–Hartmann layers, European Journal of Mechanics B/Fluids, 21, 545–559, 2002.
  • 8. S.O. MacKerrell, Stability of Bödewadt flow, Philosphical Transactions of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 363, 1181–1187, 2005.
  • 9. H.A. Jasmine, J.S.B. Gajjar, Absolute instability of the von Karman, Bödewadt and Ekman flows between a rotating disc and a stationary lid, Philosophical Transactions of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 363, 1131–1144, 2005.
  • 10. K.M.P. van Eeten, J. van der Schaaf, J.C. Schouten, G.J.F. van Heijst, Boundary layer development in the flow field between a rotating and a stationary disk, Physics of Fluids, 24, 033601, 2012.
  • 11. B. Sahoo, S. Poncet, Effects of slip on steady Bödewadt flow of a non-Newtonian fluid, Communications in Nonlinear Science and Numerical Simululation, 17, 4181–4191, 2012.
  • 12. B. Sahoo, S. Abbasbandy, S. Poncet, A brief note on the computation of the Bödewadt flow with Navier slip boundary conditions, Computers and Fluids, 90, 133–137, 2014.
  • 13. M. Turkyilmazoglu, Bödewadt flow and heat transfer over a stretching stationary disk, International Journal of Mechanical Sciences, 90, 246–250, 2015.
  • 14. M.A. Abdulameer, P.T. Griffiths, B. Alveroglu, S.J. Garrett, On the stability of the BEK family of rotating boundary-layer flows for power-law fluids, Journal of Non-Newtonian Fluid Mechanics, 236, 63–72, 2016.
  • 15. J.A. Khan, M. Mustafa, T. Hayat, F. Alzahrani, Numerical study for Bödewadt flow of water based nanofluid over a deformable disk: Buongiorno model, Indian Journal of Physics, 91, 527–533, 2017.
  • 16. M. Rahman, H.I. Andersson, On heat transfer in Bodewadt flow, International Journal of Heat and Mass Transfer, 112, 1057–1061, 2017.
  • 17. J.V. Kumar, R. Paras, S.R. Kumar, T. Dharmendra, Porosity effect on the Bondary layer Bödewadt flow of a magnetic nanofluid in the presence of geothermal viscosity, The European Physical Journal Plus, 132, 2017.
  • 18. M. Mustafa, I. Pop, K. Naganthran, R. Nazar, Entropy generation analysis for radiative heat transfer to Bödewadt slip flow subject to strong wall suction, European Journal of Mechanics, B/Fluids, 72, 179–188, 2018.
  • 19. K.K. Sankara, L.V.K.V. Sarma, On the steady flow produced in fluidparticle suspension by an infinite rotating disk with surface suction, International Journal of Engineering Science, 23, 875–886, 1985.
  • 20. J.P. Tanzosh, H.A. Stone, Motion of a rigid particle in a rotating viscous flow: an integral equation approach, Journal of Fluid Mechanics, 215, 225–256, 1994.
  • 21. M.R. Foster, P.W. Duck, R.E. Hewitt, The unsteady Karman problem for a di lute particle suspension, Journal of Fluid Mechanics, 474, 379–409, 2003.
  • 22. S. Manjunatha, B.J. Gireesha, C.S. Bagewadi, Series solutions for an unsteady flow and heat transfer of a rotating dusty fluid with radiation effect, Acta Mathematica Universitatis Comenianae, 86, 111–125, 2017.
  • 23. M. Rahman, H.I. Andersson, Heat and fluid flow in revolving fluid-particle suspension with suction, Computational Thermal Sciences, 12, 417–428, 2020.
  • 24. M. Turkyilmazoglu, Suspension of dust particles over a stretchable rotating disk and two-phase heat transfer, International Journal of Multiphase Flow, 127, 103260, 2020.
  • 25. T. Min, J. Kim, Effects of hydrophobic surface on skin-friction drag, Physics of Fluids, 16, L55, 2004.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0a45590-4369-4061-9558-882307097bcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.