PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the time-dependent behaviour of soft soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Time dependence of soft soils has already been thoroughly investigated. The knowledge on creep and relaxation phenomena is generally available in the literature. However, it is still rarely applied in practice. Regarding the organic soils, geotechnical engineers mostly base their calculations on the simple assumptions. Yet, as presented within this article, the rate-dependent behaviour of soft soils is a very special and important feature. It influences both the strength and the stiffness of a soil depending on time. It is, thus, significant to account for time dependence in the geotechnical design when considering the soft soils. This can result in a more robust and economic design of geotechnical structures. Hence, the up-to-date possibilities of regarding creep in practice, which are provided by the existing theories, are reviewed herein. In this article, we first justify the importance of creep effects in practical applications. Next, we present the fundamental theories explaining the time-dependent behaviour of organic soils. Finally, the revision of the existing constitutive models that can be used in numerical simulations involving soft soils is introduced. Both the models that are implemented in the commercial geotechnical software and some more advanced models that take into account further aspects of soft soils behaviour are revised. The assumptions, the basic equations along with the advantages and the drawbacks of the considered models are described.
Wydawca
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Department of Geotechnics, Geology and Marine Civil Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology
autor
  • Department of Geotechnics, Geology and Marine Civil Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology
Bibliografia
  • [1] den Haan, E.J., Feddema, A. (2013). Deformation and strength of embankments on soft Dutch soil. Geotechnical Engineering, 166, 239 252.
  • [2] Havel, F. (2004). Creep in soft soils. Ph.D. Dissertation. Norwegian University of Science and Technology, Trondheim.
  • [3] Akagi, H., Saitoh, J. (1994). Dilatancy characteristics of clayey soil under principal axes rotation. In: Proceedings of the International Symposium on Pre-failure Deformation Characteristics of Geomaterials 1994, Sapporo.
  • [4] Akagi, H., Yamamoto, H. (1997). Stress-dilatancy relation of undisturbed clay under principal axes rotation. In: Deformation and Progressive Failure in Geomechanics. Edited by A. Asaoka, T. Adachi, F. Oka. Pergamon, 211 216.
  • [5] Vermeer, P.A., Leoni, M. (2005). Creep in soft soils. In: W(H) YDOC 2005, Paris.
  • [6] Liingaard, M., Augustesen, A., Lade, P.V. (2004). Characterization of models for time dependent behavior of soils. International Journal of Geomechanics, 4, 157-177.
  • [7] Adachi, T., Oka, F., Mimura, M. (1996). Modeling aspects associated with time dependent behavior of soils, Measuring and modeling time dependent soil behavior. In: Geotechnical Special Publication No. 61. Edited by T.C. Sheahan and V.N. Kaliakin. ASCE, New York, 61-95.
  • [8] Briaud, J.L., Gibbens, R.M. (1994). Test and prediction results for five large spread footings on sand. In: Proceedings of Spread Footing Prediction Symposium 1994, College Station.
  • [9] Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F., Poulos, H.G. (1977). Stress deformation and strength characteristics. In: Proceedings of the 9th ICSMFE 1977, Tokyo.
  • [10] Degago, S.A. (2014). Primary consolidation and creep of clays. In: The 2nd CREEP Workshop (CREBS IV) 2014, Delft.
  • [11] Mesri, G., Kane, T. (2017). Reassessment of isotaches compression concept and isotaches consolidation models. Journal of Geotechnical and Geoenvironmental Engineering, 14, 04017119.
  • [12] Buisman, K. (1936). Result of long duration settlement tests. In: Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering 1936, Delft.
  • [13] Bjerrum, L. (1967). Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings. Géotechnique, 17, 83 118.
  • [14] Garlanger, J.E. (1972). The consolidation of soils exhibiting creep under constant effective stress. Géotechnique, 22, 71 78.
  • [15] Mesri, G., Godlewski, P.M. (1977). Time and stress compressibility interrelationship. Journal of the Geotechnical Engineering Division, 103, 417 430.
  • [16] Cudny, M., Vermeer, P.A. (2003). On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework. Computers and Geotechnics, 31, 1 22.
  • [17] den Haan, E.J. (1994). Stress independent parameter for primary and secondary compression. In: Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering 1994, New Delhi.
  • [18] Šuklje, L. (1957). The analysis of the consolidation process by the isotaches method. In: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering 1957, London.
  • [19] Mitchell, J.K., Soga, K. (2005). Fundamentals of Soil Behavior. Third Edition. John Wiley & Sons, Hoboken.
  • [20] Feda, J. (1992). Creep of soils and related phenomena. Developments in geotechnical engineering, vol. 68. Elsevier Science.
  • [21] Cosenza, P., Korošak, D. (2014). Secondary consolidation of clay as an anomalous diffusion process. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 1231-1246.
  • [22] Navarro, A., Alonso, E.E. (2001). Secondary compression of clays as a local dehydration process. Géotechnique, 51, 859 869.
  • [23] Roscoe, K.H., Burland, J.B. (1968). On the generalised stress-strain behaviour of „wet” clay. In: Engineering plasticity. Edited by J. Heyman, F. Leckie. Cambridge University Press, Cambridge, UK, 535 609.
  • [24] Brinkgreve, R.B.J. (1994). Geomaterial models and numerical analysis of softening. Ph.D. Dissertation. Delft University of Technology, Delft.
  • [25] Muir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.
  • [26] ZSoil.PC 2018 User Manual. (2018).
  • [27] Schanz, T. (1998). Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Habilitation. Stuttgart Universität.
  • [28] Schanz, T. , Vermeer, P.A., Bonnier, P.G. (1999). The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 281-296.
  • [29] Niemunis A. (2003). Extended hypoplastic models for soils. Habilitation. Ruhr-University Bochum.
  • [30] Wang, W.M. (1997). Stationary and Propagative Instabilities in Metals - A Computational Point of View. Ph.D. Dissertation. Delft University of Technology, Delft.
  • [31] Simo, J.C., Hughes, T.J.R. (1998). Computational Inelasticity. Springer-Verlag, New York.
  • [32] Heeres, O.M. (2001). Modern strategies for the numerical modeling of the cyclic and transient behavior of soils. Ph.D. Dissertation. Delft University of Technology, Delft.
  • [33] Winnicki, A., Pearce, C.J., Bićanić, N. (2001). Viscoplastic Hoffman consistency model for concrete. Computers and Structures, 79, 7 19.
  • [34] Łupieżowiec, M. (2003). Consistent viscoplastic model - conception and experimental verification. In: Proceedings of the 2nd International Young Geotechnical Engineers’ Conference 2003, Mamaia.
  • [35] Stolle, D.F.E., Bonnier, P.G., Vermeer, P.A. (1997). A soft soil model and experiences with two integration schemes. In: Proceedings of the 6th International Symposium on Numerical Models in Geomechanics 1997, Montreal.
  • [36] Vermeer, P.A., Neher, H.P. (1999). A soft soil model that accounts for creep. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 249-261.
  • [37] Brinkgreve, R.B.J. (2004). Time dependent behaviour of soft soils during embankment construction – a numerical study. In: Numerical Model in Geomechanics, Proceedings of NUMOG IX. Ottawa, Canada.
  • [38] Boudali, M. (1995). Comportementtridi mensionnelet visqueuxdesargiles naturelles. Ph.D. Dissertation. Universite Laval, Quebec.
  • [39] Leoni, M., Karstunen, M., Vermeer, P.A. (2008). Anisotropic creep model for soft soils. Géotechnique, 58, 215 226.
  • [40] Niemunis, A., Grandas Tavera, C.E. (2009). Anisotropic visco hypoplasticity. Acta Geotechnica, 4, 293 314.
  • [41] Sexton, B.G., McCabe, B.A, Karstunen, M., Sivasithamparam, N. (2016). Stone column settlement performance in structured anisotropic clays: the influence of creep. Journal of Rock Mechanics and Geotechnical Engineering, 8, 672 688.
  • [42] Norton, F.H. (1929). The creep of steel at high temperatures. McGraw Hill, NY.
  • [43] Leroueil, S., Marques, M. (1996). Importance of strain rate and temperature effects in geotechnical engineering. ASCE Convention, USA.
  • [44] de Borst, R., Pamin, J. (1996). Some novel developments in finite element procedures for gradient-dependent plasticity. International Journal for Numerical Methods in Engineering, 39, 2477 2505.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a09f1524-31d3-4b53-98b6-0605b6bd3580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.