PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Badania korozji miedzi w warunkach atmosferycznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Investigations of the atmospheric corrosion of copper
Konferencja
Seminarium Instytutu Mechaniki Precyzyjnej „Azotowanie stali konstrukcyjnych i narzędziowych” (4.06.2014, Poznań, Polska)
Języki publikacji
PL
Abstrakty
PL
Przedstawiono dane dotyczące szybkości korozji miedzi w różnych obszarach geograficznych i różnych poziomach zanieczyszczenia powietrza zebrane podczas obserwacji ekspozycji prowadzonych w ramach międzynarodowych programów w Południowej Ameryce, Europie i Azji. Zamieszczono wyniki dotyczące prędkości korozji w różnych obszarach korozyjnych Polski i dokonano oceny efektywności wpływu poszczególnych czynników klimatycznych i zanieczyszczeń powietrza na szybkość korozji miedzi.
EN
The paper presents the data of corrosion losses of copper in different geographical areas and levels of contaminants in air collected during field exposure in frame international programs in South America, Europe and Asia. The results of corrosion losses measurements on corrosion sites on the area of Poland as well as assessment of aggressiveness of climatic and pollution factors on the corrosion rate of copper are described.
Rocznik
Tom
Strony
73--79
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
autor
  • Instytut Mechaniki Precyzyjnej, Warszawa
Bibliografia
  • [1] Gradel T.E., Nassau K., Franey J.P.: Corrosion patinas formed in the atmosphere - Introduction, „Corrosion Science", 27,7, 1987, s. 639-657.
  • [2] Gradel T.E.: Copper patinas formed in the atmosphere. A qualitative assessment of mechanism, „Corrosion Science", 27,7, 1987, s. 721 -740.
  • [3] Livingston R.A.: Influence of the environment on the patina of the Statue of Liberty, „Environmental Science and Technology", 25, 1991, s. 1400-1408.
  • [4] Arshadi M.A., Johnson J.B., Wood G.C.: The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals, „Corrosion Science", 23,7, 1983, s. 763-776.
  • [5] Lee S., Staehle R.W.: Adsorption of water on copper, nickel and iron, „Corrosion", 53, 1, 1997, s. 33-42.
  • [6] Itoh J., Takeshi T., Ohtsuka T.: The influence of oxide layers on initial corrosion behavior of copper in air containing water vapor and sulfur oxide, „Corrosion Science", 42, 2000, s. 1539-1551.
  • [7] Astrup T, Wadsak T.M., Leygrf C., Schreiner M.: In situ studies of the initial atmospheric corrosion of copper influence of humidity, sulfur dioxide, ozone and nitrogen dioxide, „J. Electrochem. Soc.",147,7, 2000,3.2543-2551.
  • [8] Lobnig R, Sincllair J.D., Unger R.M., Stratmann M.: Mechanism of atmospheric corrosion of copper in the presence of ammonium sulfate particles, „J. Electrochem. Soc." 150,6, A, 2003, s. 835-849.
  • [9] Tidblad J., Leygraf C.: Atmospheric corrosion effects of SO2 and NO2 A comparison of laboratory and field-exposed copper, „J. Electrochem. Soc.", 142, 3, 1995,3.749-756.
  • [10] Sydberger T., Vannerberg N.G.: The influence of the relative humidity and corrosion products on the ad-sorption of sulfur dioxide on metal surfaces, „Corrosion Science", 12, 1972, s.775-784.
  • [11] Oesch S., Heimgarten P.: Environmental effects on metallic materials - Results of an outdoor exposure programme running in Switzerland, „Materials and Corrosion", 47, 1996, s. 42 -438.
  • [12] Lobnig R., Frankenthal R.P., Siconolfi D.J., Sinclair J.D.: Atmospheric corrosion of copper in the presence of acid ammonium sulfate particles, „J. Electrochem. Soc.", 140, 7,1993, s.1902-1907.
  • [13] Samie F., Tidblad J., Kucera V., Leygraf C.: Atmospheric corrosion effects of HNO3 - Influence of temperature and relative humidity on laboratory-exposed copper, , Atmospheric Environment, 41, 7, 2007, s. 1374-1382.
  • [14] Rodrigues L.M., Almeida E. i inni: Marine corrosion in tropical environment, ASTM STP 1399, S.W. Dean, Guillermo Hernandez-Duque Delgadillo, James B. Bushman, American Society for Testing and Materials, West Conshohocken, PA, USA, 2000,5.3-17.
  • [15] CYTED Corrosion y protection de metales en las atmosferas de Iberoamerica, Morcillo M., Almeida E., Rosales B., Uruchurtu J., Marrocos M.: Programa CYTED 1998.
  • [16] de la Fuent D., Simanacas J., Morcillo M.: Morpho-logical study of 16-year patinas formed on copper in a wide rangę of atmospheric exposures, „Corrosion Science,,, 50, 2008, s. 268-285.
  • [17] Nairn J.D., Skennerton S.G, Atrens A.: Comparative atmospheric corrosion of primary and cold rolled copper in Australia, „Journal of materials Science", 38,5,2003,3.995-1005.
  • [18] Tidblad J., Kucera V., Samie F.: Exposure programme on atmospheric corrosion effects of acidifing pollutants in tropical and subtropical climates, water Air Soil Pollution Focus 7, 2007, s. 241-247.
  • [19] Mikhailov A.A., Strekalov P.V., Panchenko Yu.M.: Atmospheric corrosion of metals in region of cold and extremely cold climate (a review), Protection of Metals, 44, 7, 2008, s. 644 -659.
  • [20] UN/ECE International Co-operative programme on effect on materials, including historic and cultural monuments, Report No.23, Bavarian State Conservation Office, Munich, Germany, 1998.
  • [21] UN/ECE International Co-operative programme on effect on materials, including historie and cultural monuments, Report No.37, Bavarian State Conservation Office, Munich, Germany, 2001.
  • [22] Kratschmer A., Odenevall Wallinde l., Leygraf C.: The evolution of outdoor copper patina, Corrosion Science, 44, 2002, s. 425-450.
  • [23] Watanabe W., Tomita M., Ichino T.: Characterization of copper products formed on copper in urban, rural/coastal, and hot springs areas, 148, 12, 2001, s. B522-B528.
  • [24] Franey J.: Degradation of metals in the environment, ASTM STP 965, S.W.Dean, T.S.Lee, American So-ciety for Testing and Materials, West Conshohocken, PA, USA, 1987, s. 306-314.
  • [25] EI-Mahdy G.A.: Atmospheric corrosion of copper under wet/dry cyclic conditions, „Corrosion" Science, 47,2005,s. 1370-1383.
  • [26] Oesch S., Faller M.: Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures, „Corrosion Science", 39,9, 1997, s. 1505-1530.
  • [27] Odevall l., Leygraf C.: Atmospheric corrosion of copper in rural atmosphere, „J. Electrochem. Soc.",142,11, 1995, s. 3682-3689.
  • [28] Odnevall Wallinder l., Leygraf C.: Seasonal variation in corrosion rate and runoff rate of copper roots in an urban and a rural atmospheric environment, „Corrosion Science", 43, 2001, s. 2379-2396.
  • [29] Fitzgerald K.P., Nairn J., Skennerton G., Arens A.: Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on cop¬per, „Corrosion Science", 48, 9, 2006, s. 2480-2509.
  • [30] de la Fuente D., Simancas J., Morcillo M.: Morphological study of 16-year patinas formed on copper in a wide rangę of atmospheric exposures, „Corrosion Science", 50, 2008, s. 268-285.
  • [31] Dean S.W.: Atmospheric Corrosion, W.W. Kirk, H.H. Lawson, ASTM STP 1239, „American Society for Testing and Materials", Philadelphia, 1995.
  • [32] Kobus J.: Application of the air corrosivity monitoring for mapping of the risk of the cultural heritage objects on the area of Poland, Proceedings of the 5-th EC Conference „Cultural Heritage Research: Pan-European Challenge", Cracow 2002, 337.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a09b401d-c757-4f7d-858a-f6664f3d2b2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.