PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

New approaches for the identification of influential and critical nodes in an electric grid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aftermath of including new technologies in a modern electric system in conjunction with the incessant rise in power demand could pose a risk to the optimal operation of the system. Therefore, it becomes imperative to identify the most influential and critical nodes of such a system to avert future problems in network operation. In this paper, to identify most significant nodes of the system, the authors propose two measures of centrality in accordance with the network structural properties of a power system, namely, degree centrality (DC) and eigenvector centrality (EC). These are expressed considering the admittance matrix that exists among the interconnection of load to load nodes in an electrical power network. A critical node closeness centrality (CNCC) method is also proposed to identify critical nodes of the system. This is done by modifying the conventional closeness centrality (CC) to include the influence of interconnection that exists between network load to load nodes as captured by the admittance matrix between them. A comparative analysis of the proposed techniques with other conventional methods is also carried out. The result of the simulation shows that the proposed methods could serve as alternative tools in the identification of influential and weak nodes in a power system.
Rocznik
Strony
671--686
Opis fizyczny
Bibliogr. 29 poz., tab., wz.
Twórcy
  • Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria
autor
  • University of Johannesburg, P.O. BOX 524, Auckland Park 2006, South Africa
Bibliografia
  • [1] Wang Z., Scaglione A., Thomas R.J., Electrical centrality measures for electric power grid vulnerability analysis, the 49th IEEE Conf. on Decision and Control (CDC), pp. 5792–5797 (2010), DOI: 10.1109/CDC.2010.5717964.
  • [2] Nasiruzzaman A.B.M., Pota H.R., Bus Dependency matrix of electrical power system. Electrical Power and Energy Systems, vol. 56, pp. 33–41 (2014), DOI: 10.1016/j.ijepes.2013.10.031.
  • [3] Kostevev D.N., Taloy C.W., Mittelstadt W.A., Model validation for the August 10, 1996 WSCC system outage, IEEE Trans. Power System, vol. 14 no. 3, pp. 967–79 (1999), DOI: 10.1109/59.780909.
  • [4] Andersson G., Donalek P., Farmer R., Hatziargyriou N., Kamwa I., Kundur P. et al., Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance, IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1922–8 (2005), DOI: 10.1109/ TPWRS.2005.857942.
  • [5] Li P., Liu J., Li B., Song Y., Zhong J., Dynamic Power System Zone Division Scheme Using Sensitivity Analysis, Journal of International Council on Electrical Engineering, vol 4, no. 2, pp. 157–161 (2014), DOI: 10.5370/JICEE.2014.4.2.157.
  • [6] Mangaiyarkarasi S.P., Sree Renga Raja T., PSO based optimal location and sizing of SVC for novel multiobjective voltage stability analysis during N – 2 line contingency, Archives of Electrical Engineering, vol. 63, no. 4, pp. 535–550 (2014), DOI: 10.2478/aee-2014-0037.
  • [7] Bhattacharyya B., Ran S., Ishwar Vais R., Pratap Bharti I., GA based optimal planning of VAR sources using Fast Voltage Stability Index method, Archives of Electrical Engineering, vol. 65, no. 4, pp. 789–802 (2016), DOI: 10.1515/aee-2016-0055.
  • [8] Moger T., Dhadbanjan T., A novel index for identification of weak nodes for reactive compensation to improve voltage stability, in IET Generation, Transmission and Distribution, vol. 9, no. 14, pp. 1826–1834 (2015), DOI: 10.1049/iet-gtd.2015.0054.
  • [9] Balamourougan V., Sidhu T.S., Sachdev M.S., Technique for online prediction of voltage collapse, in IEE Proceedings - Generation, Transmission and Distribution, vol. 151, no. 4, pp. 453–460 (2004), DOI: 10.1049/ip-gtd:20040612.
  • [10] Taloy C.W., Power System Voltage Stability, McGraw-Hill Companies (1994).
  • [11] Adebayo I.G., Jimoh A.A., Yusuff A.A., Sun Y., Alternative method for the identification of critical nodes leading to voltage instability in a power system, African Journal of Science, Technology, Innovation and Development, vol. 10, pp. 323–333 (2018), DOI: 10.1080/20421338.2018.1461967.
  • [12] Adebayo I.G., Jimoh A.A., Yusuff A.A., Voltage stability assessment and identification of important nodes in power transmission network through network response structural characteristics, in IET Generation, Transmission and Distribution, vol. 11, no. 6, pp. 1398–1408 (2017), DOI: 10.1049/ietgtd.2016.0745.
  • [13] Mir Sayed D., Senjyu T., Danish S., Sabory N.R., Narayanan K., Paras M., A Recap of Voltage Stability Indices in the Past Three Decades, Energies, vol. 12, 1544 (2019), DOI: 10.3390/en12081544.
  • [14] Adebayo I.G., Sun Y., New Performance Indices for Voltage Stability Analysis in a Power System, Energies, vol. 10, no. 12, pp. 1–18 (2017), DOI: 10.3390/en10122042.
  • [15] Francisco G., Barocio E., Uribe F., Zuniga P., Vulnerability Analysis of Power Grids Using Modified Centrality Measures, Discrete Dynamics in Nature and Society, vol. 2013, article ID 135731, pp. 1–11 (2013), DOI: 10.1155/2013/135731.
  • [16] Saleh M., Esa Y., Mohamed A., Applications of Complex Network Analysis in Electric Power Systems, Energies, vol. 11, no. 6, pp. 1–16 (2018), DOI: 10.3390/en11061381.
  • [17] Zhao X., Liu F., Wang J., Li T., Evaluating Influential Nodes in Social Networks by Local Centrality with a Coefficient, ISPRS Int. Journal of Geo-Inf., vol. 6, no. 2, pp. 1–11 (2017), DOI: 10.3390/ijgi6020035.
  • [18] Lucas C., Sancho S., Javier Del Ser, Silvia Jiménez-Fernández, Zong W.G., A Critical Review of Robustness in Power Grids Using Complex Networks Concepts, Energies, vol. 8, no. 9, pp. 9211–9265 (2015), DOI: 10.3390/en8099211.
  • [19] Zhang G., Wang C., Zhang J. et al., Vulnerability assessment of bulk power grid based on complex network theory, Proc. of the Third Int. Conf. on Deregulation and Restructuring and Power Technologies (DRPT ‘08), pp. 1554–1558 April 2008, DOI: 10.1109/DRPT.2008.4523652.
  • [20] Wang K., Zhang B., Zhe Zhang, Xiang-gen Y., Wang B., An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load, Elsevier Physica, vol. 390, no. 23–24, pp. 4692–4701 (2011), DOI: 10.1016/j.physa.2011.07.031.
  • [21] Tulu M.M., Hou R., Younas T., Identifying Influential Nodes Based on Community Structure to Speed up the Dissemination of Information in Complex Network, IEEE Access, vol. 6, pp. 7390–7401 (2018), DOI: 10.1109/ACCESS.2018.2794324.
  • [22] Sikiru T.H., Jimoh A.A., Agee J.T.,Inherent Structural characteristic Indices of Power system Networks, International Journal of Electrical Power and Energy Systems, vol. 47, no. 1, pp. 218–224 (2013), DOI: 10.1016/j.ijepes.2012.11.011.
  • [23] Caro-Ruiz C., Mojica-Nava E., Centrality Measures for Voltage Instability Analysis in Power Networks, Automatic Control (CCAC), IEEE 2nd Colombian Conference on Manizales, pp. 1–6 (2015), DOI: 10.1109/CCAC.2015.7345182.
  • [24] Nasiruzzaman A.B.M., Pota H.R., Mahmud M.A., Application of Centrality Measures of Complex Network Framework in Power Grid, ECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, pp. 4660–4665 (2011), DOI: 10.1109/IECON.2011.6120079.
  • [25] Nasiruzzaman A.B.M., Pota H.R., Modified centrality measures of power grid to identify critical components: method, impact, and rank similarity, IEEE Power and Energy Society General Meeting (PES), pp. 1–8 (2012), DOI: 10.1109/PESGM.2012.6344566.
  • [26] Noori A., On the Relation between Centrality Measures and Consensus Algorithms, 2011 IEEE International Conference on High Performance Computing and Simulation (HPCS), Istanbul, pp. 225–232 (2011), DOI: 10.1109/HPCSim.2011.5999828.
  • [27] Cadini F., Zio E., Petrescu C.A., Using centrality measures to rank the importance of the components of a complex network infrastructure, Setola R. and Geretshuber S. (Eds.): CRITIS, LNCS 5508, Springer-Verlag Berlin Heidelberg, pp. 155–167 (2009), DOI: 10.1007/978-3-642-03552-4_14.
  • [28] Curtis E.B., Morrow J.A., Inverse problems for electrical networks, SIAM J. Appl. Math., vol. 13, pp. 1–196 (2003), DOI: 10.1142/4306 – March 2000.
  • [29] Gao B., Morison G.K., Kundur P., Voltage stability evaluation using modal analysis, IEEE Trans. Power Syst., vol. 7, pp. 1529–1542 (1992), DOI: 10.1109/MPER.1992.161430
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a09ae9f2-084e-4b5d-9c3b-1ccffdaf3279
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.