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1. TARIFF OPTIMIZATION IN TELECOMMUNICATION 

1.1 Introduction 

The problem we consider is related to the selection of an optimal tariff offered 

to a customer by a telecommunication company. A customer aims at choosing 

the best (usually the low cost) tariff from available offers. Because of structure 

of the tariffs the customer can have problems in a proper estimation of the future 

tariff costs and as a result he can miss the optimal tariff. A telecommunication 

company proposes the combinations of services within several contracts to an indi-

vidual customer or a corporation. Among these services are for example: domestic 

and foreign calls, local and long distance calls, SMS and MMS messages, etc. 

In general the number of these services can be quite significant especially when 

a corporate client is considered. Some of these services can be packed into packages 

which we call contracts -- they require fixed monthly payments if the specified number 

of services included in them are not exceeded. If a customer uses more services than 

those specified in the contract he is charged for each exceeding service.  The tariff 

optimization problem is then defined as a problem of finding the best possible 

choice of contracts such that the monthly client payment is the lowest.  
The tariff optimization problem can also be considered from the telecom-

munication operators point of view. In that case one tries to maximize revenue in 

the telecommunication network he manages. These optimization models  propose 

how to deal with the yield management. Yield management has attracted interest 

from theoretical as well as operational point of view0. One may assume that this 

can be seen as elaborating the pricing strategies using maximum capacity available 

to the telecommunication operator. Bouhtou et al. studied pricing for telecommuni-

cations and proposed a model of multilevel pricing0. Another approach was0 a bi-

level optimization formulation to model competition between operators. Viterbo 

et al.0 described revenue maximization during a real-time pricing for cellular 

network operator. Bouhtou 0 considered a pricing model for the operator that owns 

a subset of telecommunication routes and receives a revenue by allowing clients 

to use them. Multiply clients which use telecommunication network choose 

the routes taking into account the costs of the communication routes.  
None of above described models can be used by companies which use  

telecommunication services and sign a contract with a telecommunication company 

which should provide the lowest possible costs of these services. 
We assume that a  customer knows his own profile. By the customer's profile 

we mean his average use of services during some pre-specified period of time 

(usually last year data are considered). Taking into account only some telecom-

munication offers in  the national market we can stress that these offers very often 

involve a mechanism of discounts for clients and that mechanism can be only 

modeled  by using logic programming techniques. 
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In this article we describe some optimization problems which are derived from 

a base problem by adding constraints (not only logical constraints but also con-straints 

that can be described as logical predicates with first order predicate logic). All the 

presented problems were modeled and solved in CISCO ECLiPSe and IBM ILOG 

CPLEX environments. The first environment uses a classic CLP solver while the 

second one applies MIP/QP solver with constraint programming techniques involved. 

1.2 Problem formulation  

In this section we present a formal definition of the tariff optimization problem. 

First a MILP (Mixed Integer Linear Problem) model is presented. This model 

is the basis for the optimization problems solved by ILOG and ECLiPSe solvers. 

Next the model is modified by the introduction of some logic constraints and 

general logic programming constraints like alldifferent. A base problem is thus 

transformed into a constraint logic programming problem that can be solved 

by CLP solvers or hybrid MILP – CLP solvers as the next sections show. 

Let us denote by iy  the number of contracts of the i-th type and by ijx  the number 

of the j-th services within the i-th type of contract. Then the tariff optimization problem 

– P - is as follows (more general formulations with the option for substitute services 

are possible) 
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Here, 
njmiijxx

,...,1,,...,1 
 ,  

miiyy
,...,1

 , ic  is the monthly cost of the i-th 

contract, ijc  is the unit cost of the j-th service in the i-th contract and  ijb  is the limit of 

the j-th  service in the i-th contract which is included in the contract as free of charge. 

Furthermore, 
h

jx  denotes the average number of units of the j-th service measured 

in the pre-specified period of time. 
0

ic  is a monthly cost of using contracts from 

a company point of view. It may be treated as additional costs put on the contract 

signed. Then iv  describes situation that additional costs are paid when contract is 

signed ( iv  is a Boolean variable).  

In order to complete the description of the problem we have to indicate that 

variables y  are integer variables, furthermore we assume that x  are real numbers. 

Problem P can be stated as a standard linear MILP problem by introducing 

auxiliary variables ijz  which transform the problem to the problem with a differen-

tiable cost function (IBM ILOG,2009):   
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and constraints (2)-(6). 

2. SOLVING A TARIFF OPTIMIZATION PROBLEM 

2.1. MIP models  

In this section we present a base formulation of the tariff optimization problem 

and some of its modifications. We introduce additional logic constraints Bouhtou, 

Medori & Minoux, 2011) and global predicates alldifferent (CISCO Systems, 2006). 

Logic constraints were not transformed into algebraic equations, because in 

a general case it may by a time consuming task (Fruwirth & Abdennadher, 2003). 
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A tariff optimization problem (1)-(6) is a standard MIP problem (in this case 

MILP problem), where all the constraints are linear and an optimization function 

is a linear function too. This model can be easily solved and one have a guarantee 

that a solution found will be an optimal solution (or that there is no bounded 

solution). Linear MIP problems can be solved very effectively by modern solvers 

such as IBM ILOG or ECLiPSe solver. When we have to reformulate the problem 

by adding logical constraints we can try to remodel the problem by putting 

the logical constraints as algebraic constraints.  

Some modern solvers like ILOG have their own mechanisms that automatically 

reformulate the logic constraints to the algebraic ones (CISCO Systems, 2006) 

(Fruwirth & Abdennadher, 2003). If it is not the case one must do it manually and that 

can be difficult. Fortunately ILOG CPLEX allows us to formulate MIP problems 

with logic constraints and solve it with a modified MIP solver. 

2.2. Decomposition method for MIP problem  

Problem P can be solved by various algorithms (some results are presented in the 

next section), however for problems with large m  and n  the performance of these 

methods couldn't allow us to use them in on-line computations – when this task is 

solved by the telecommunication companies (an offer for a corporate client can refer to 

as many as 20 different contracts which can have as many as 200 different services).  

In order to circumvent the dimensionality problem we advocate to use the rela-

xation methods based on the Lagrangian of the problem. Since only constraints (2) 

unable us to solve the problem in the decomposed way-each subproblem 

corresponds to each contract i-th-we introduce the Lagrange function with respect 

to these constraints:  
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where j are the Lagrange multipliers corresponding to (2). 

The problem can then be solved by using two-stage algorithm where at the 

lower level subproblems miPi ,...,1,   are solved: 
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subject to (2)-(6) and (8)-(9) and assuming that njj ,...,1,   from the upper level 

of the algorithm are given. 
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At the upper level of the algorithm variables njj ,...,1,   are updated in order to 

maximize the function    ,,
~

yxff  . 

Where  x  and  y  are solutions to the problems miPi ,...,1,  . Since the 

upper level of the optimization algorithm is nondifferentiable problem subgradient 

methods such as those described in (Goncalves & Ladanyi, 2005) should be used to 

solve it. The subgradient method we propose to solve the upper optimization 

problem is that of Kiwiel (Kiwiel, 1985). 

2.3. ILOG CPLEX problem formulation  

Below we present the problem formulation in which only algebraic constraints 

were taken into account. The problem is described in OPL – modern language for 

modeling the optimization problems formulated within ILOG. First the parameters 

and variables definitions are presented.  
 

int   NbContracts = ...; 

int   NbServices = ...; 

 

range Contracts = 1..NbContracts; 

range Services = 1..NbServices; 

 

float ContractCosts[Contracts]  = ...; 

float ContractServicesCosts[Contracts,Services] = ...; 

float ContractInitialCosts[Contracts]  = ...; 

float Xh[Services] = ...; 

float M[Contracts] = ...; 

float b[Contracts,Services] = ...; 

 

dvar int+    y[Contracts]; 

dvar int+    z[Contracts,Services]; 

dvar int+    x[Contracts,Services]; 

dvar int+    v[Contracts] in 0..1; 

 

Variable dvar int+ means that a variable is a positive integer.  

Optimization function (7) can be modeled as: 
minimize  

  sum(i in Contracts) ContractCosts[i]*y[i] + 

  sum(i in Contracts, j in Services)     

    ContractServicesCosts[i,j]*z[i,j] + 

  sum(i in Contracts ) ContractInitialCosts[i]*v[i]; 

 

Constraints (2)-(6) and (8)-(9) can be modeled as: 
subject to { 

  forall( j in Services ) 

    c_hist_data:  

      sum(i in Contracts) x[i][j] == Xh[j]; 
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  forall( i in Contracts ) 

    c_yx_connection:  

      sum(j in Services) x[i][j] <= M1*y[i]; 

  forall( i in Contracts ) 

    c_contracts_limit: y[i] <= M[i]; 

  forall( i in Contracts ) 

      sum( j in Services ) z[i][j] >= 0.0; 

  forall( i in Contracts, k in Services )  

    x[i][k] - y[i]*b[i][k] - z[i][k] <= 0.0; 

  forall( i in Contracts )  

    c_v_data: y[i] <= M2*v[i]; 

} 

 

OPL language can be used to model both MIP and CLP problems. We have to stress 

that there are interfaces between OPL and other languages (.NET, JAVA or C++). 

2.4. CLP problem formulation 

CLP (Constraint Logic Programming) is an alternative method we can use to 

solve the tariff optimization problem. A CLP method is, for example, discussed in 

and is used to solve the combinatorial problems where some of the constraints 

cannot be formulated as algebraic equations. These constraints are very often 

modeled as standard global predicates like alldifferent, atleast, atmost etc. 

CLP calculus is a generalization of LP (Logic Programming). The only 

modification in CLP are the added constraints, so the unification is replaced by 

constraint handling process. Constraints can occur in the goals rule and in the body 

clauses. Clauses of CLP and LP (Logic Programming) are defined in the same way.  

CLP syntax is presented in (11).  

The optimization problem P can also be stated as a CLP model in ECLiPSe. 

The variables and parameters definitions are the same as in ILOG solver. 

Constraints and optimization function are shown below. ECLiPSe language is 

a Prolog language extension which allows sophisticated construction of constraints. 

Because CLP solver search for a solution and grounds the variables we must use 

eval() predicate in order to evaluate terms in arithmetic expressions). This is one 

of the predicates used by the ECLiPSe compiler to expand arithmetic expressions. 

The searching process is described in (Bouhtou,Erbs,Minoux,2007), (Bouhtou, 

Medori & Minoux, 2011). The modeling issues are described in (Nemhauser 

& Wolsey, 1988), (Pytlak & Stecz, 2007).   
 

dim(Y,[NumContracts]), 

Y :: 0..Nc, 

dim(V,[NumContracts]), 

V :: 0..1, 

dim(X,[NumContracts,NumServices]), 

X :: 0..Ns, 

dim(Z,[NumContracts,NumServices]), 
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Z :: 0..Ns, 

 
/* constraints */ 

% constraint no.  

(for(I,1,NumContracts), param(NumServices,X,Y,Z,B) do  

  (for(J,1,NumServices), param(X,Z,Y,B,I) do 

      eval(X[I,J])-eval(Y[I])*B[I,J]-eval(Z[I,J]) #=< 0   

)), 

% constraint no. 

(for(I,1,NumContracts),param(Y,M) do eval(Y[I])#=< M[I]), 

% constraint no.  

(for(J,1,NumServices),param(NumContracts,Xh,X) do 

   Xj is X[1..NumContracts,J],   

   eval(sum(Xj)) #= Xh[J]), 

% constraint no. 

(for(I,1,NumContracts), param(NumServices,Y,X,M1) do 

   Xi is X[I,1..NumServices],   

   eval(sum(Xi)) #=< M1*Y[I]), 

% coinstraint no. 

(for(I,1,NumContracts), param(NumServices,Z) do 

   Zi is Z[I,1..NumServices],   

   eval(sum(Zi)) #>= 0), 

% coinstraint no.       

(for(I,1,NumContracts), param(Y,V,M2) do 

   eval(Y[I]) #=< M2*eval(V[I])), 

 

/* optimization criteria */ 

% elements of min function – Costs1, Costs2, Costs3 

(for(I,1,NumContracts), 

 fromto(0,In1,In1+ContractCosts[I] * Y[I],Costs1), 

 param(Y,ContractCosts) do true), 

 

(for(I,1,NumContracts) * for(J,1,NumServices), 

 fromto(0,In,Out,Costs2), 

 param(ServiceCosts,Z) do 

   Out = In + ServiceCosts[I,J] * Z[I,J]), 

 

(for(I,1,NumContracts), 

 fromto(0,In1,In1+ContractInitialCosts[I] * V[I],Costs3), 

 param(V,ContractInitialCosts) do true), 

 

TotalCosts #= eval(Costs1)+eval(Costs2)+eval(Costs3), 

term_variables([V,Y,X,Z,TotalCosts], Vars), 

 

 

/* search algorithm */         

bb_min(search(Vars,0,first_fail,indomain_min,bbs(100), 

[backtrack(Backtracks)]),TotalCosts, 

bb_options{strategy:dichotomic, timeout:260}) 

 

Function bb_min starts a branch and bound solver on interval constraints 

(IC ECLiPSe library). Its aim is to make it convenient to write hybrid solutions to 
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problems, mixing together integer and real constraints and variables. Search method 

(method of instantiation of variables) search is configured to search the variables 

with the smallest domains. Algorithm start searching from the middle of the variable 

domain. 

2.5. Additional constraints: logic constraints and global predicates 

Very often one is not able to model optimization problems as MIP or MILP 

problems, because additional constraints should be taken into account that are not 

algebraic ones. For example, consider logic constraints and one global predicate 

alldifferent that should be included in the discussed model. The logic constraints 

are of the form (16) and (17) as presented below. 

  kj yy  
(12) 

  k

h

j yx  
(13) 

Both (15) and (16) constraints prevent solver from setting any value to ky  from its 

domain. Both ILOG CLPEX and ECLiPSe solvers were able to find solutions when 

these constraints were added. ILOG CLPEX transformed these constraints to the 

algebraic ones automatically so we could solve this problem with standard MIP and CP 

solver. Parameters  , were set by taking into account historical usage of services. 

The global constraint alldifferent enforces all variables to take distinct values. 

The alldifferent constraint occurs in most practical problems directly or indirectly. 

A first example is the n-queen chess puzzle problem when one has to place n que-

ens on a n by n chessboard in such a way that no queen attacks another. 

Two queens attack each other if they are located on the same column, on the same 

row, or on the same diagonal. One way of solving this problem is to model it as 

theconjunction of three alldifferent constraints. 

2.6. Hybrid problem formulation (MIP and CLP) 

Hybrid solvers that link MIP (or MILP) and CLP solver functionality must 

communicate in effective way to obtain feasible solutions and later to find 

the optimal/suboptimal solution. To fulfill this assumption one has to combine the 

availability of the MIP solver with an event-driven execution by the CLP solver 

in order to achieve a mutual cooperation for solving linear and other constraints. 

Hybrid solver has to be able to detect inconsistency of a problem and to propagate 

information in case of consistency.  

The MIP solver is automatically invoked by Branch & Bound steering 

mechanism when the corresponding constraint system has been changed (by CLP 
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solver). There are precisely defined situations when MIP solver is invoked. These 

are: when CLP solver adds a new linear constraint, CLP solver finds tighter / better 

variable bounds (then the previously found solution is excluded) or when any 

variable is instantiated of variables to a value different from its solution value 

(search and ground process is described in (Nemhauser & Wolsey, 1988)). The in-

formation flow between CLP and MIP solvers is shown in Fig. 1. 

 

 

Fig. 1 Framework of hybrid MIP and CLP solver 

The main steps during hybrid solver computations are: 

1. Constraints settings (for the variables and domains) 

2. Search methods settings (problem specific) 

3. Constraint propagation (depends on domain: IC, FD) domain bounding, 

searching for empty domains, variables grounding 

4. Solving relaxed MIP problem checking a solution at each node,  checking 

optimum values according to lower and upper bounds. 

Steps 3-4 are made until the solution is found. 

The optimization problem P, as a hybrid CLP-MIP model in ECLiPSe, is 

presented below. The communication model between MIP and CP solvers 

(a hybrid solver model) is described in 2.7. 
   

dim(Y,[NumContracts]),  

[eplex, ic]: (Y[NumContracts] $:: 0.0..T), 

[eplex, ic]: (integers(Y[1..NumContracts])), 

dim(V,[NumContracts]), 

[eplex]: (V[NumContracts] $:: 0.0..1.0), 

[eplex]: (integers(V[1..NumContracts])), 

dim(X,[NumContracts,NumServices]), 

[eplex]: (X[NumContracts,NumServices] $:: 0.0..M), 

dim(Z,[NumContracts,NumServices]), 

[eplex]: (Z[NumContracts,NumServices] $:: 0.0..N), 

   Eplex MILP solver can be changed and many commercial and open source 

solvers can be added (CPLEX, COIN-OR project solvers etc.). In our case it was 
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COIN-OR CBC MIP solver. ECLiPSe can be assigned to ILOG solver as MIP 

solver too. One has to assign very carefully each constraint to the constraint solver. 

A constraint can be assigned to more than one solver. 
 

/* MIP constraints */ 

(for(I,1,NumContracts), param(NumServices,X,Y,Z,B) do  

  (for(J,1,NumServices), param(X,Z,Y,B,I) do 

     eplex: (X[I,J] - Y[I]*B[I,J] - Z[I,J] $=< 0.0))), 

 

(for(I,1,NumContracts), param(NumServices,X,Z) do  

  (for(J,1,NumServices), param(X,Z,I) do 

    eplex: (X[I,J] $>= 0.0),  

    eplex: (Z[I,J] $>= 0.0))), 

 

(for(I,1,NumContracts), param(Y,V) do  

  [eplex, ic]: (Y[I] $>= 0.0),  

  [eplex, ic]: (Y[I] $=< 100.0), 

  eplex: (V[I] $>= 0.0), 

  eplex: (V[I] $=< 1.0)), 

 

(for(J,1,NumServices), param(NumContracts,Xh,X) do 

   eplex: (sum(X[1..NumContracts,J]) $= Xh[J])), 

 

(for(I,1,NumContracts), param(NumServices,Y,X,M1) do 

   eplex: (sum(X[I,1..NumServices]) $=< M1*Y[I])), 

         

(for(I,1,NumContracts), param(Y,V,M2) do 

   eplex: (Y[I] $=< M2*V[I])), 

 

/* CLP constraints */ 

ic: (Y[9] $=< 10), 

ic: (alldifferent(Y[1..3])), 

ic: (Cost $>= 0.0), 

/* optimization criteria */ 

!!! The same as in MIP solver case 

 

eplex: (TotalCosts $= Costs1 + Costs2 + Costs3),         

 

/* search algorithm */ 

eplex_solver_setup( 

  min(TotalCosts),Cost,[sync_bounds(yes)],inst]), 

 

bb_min((labeling(Y),eplex_get(cost,Cost)),Cost,bb_options{strategy

:continue}). 

 

Branch and bound search algorithm starts the MIP solver and solves the MIP task. 

Next the labeling process is started and CLP solver propagates the constraints. When 

Y vector values change, B&B algorithm restarts MIP solver with the new Y vector 

with the smaller domains for its elements. The process is conducted till all CLP 

constraints are satisfied and MIP solver finds a solution (or finds an inconsistency). 
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3. NUMERICAL RESULTS 

We applied our optimization model in small and medium size problems. Below 

we present the results for medium optimization tests.  

Table 1 Results for MIP ILOG CPLEX solver 

Optimization of medium problems 

Number of variables:    1327 (13 contracts and 50 services) 

MILP problem CPU time [s] number of 

iterations 

number of cuts 

without logic constraints 0.47 1056 188 

with logic constraints 0.20 373 11 

 

Relatively good results for the second problem with the logic constraints can be 

explained by the fact that the addition of the logic constraints narrows the  search 

space. These results suggest that introducing these constraints can speed up the 

search process.  However, this is not the rule in a general case. 

In the Table 2 the results of the CLP solver are presented. All the variables were 

defined as integers which improved a search process performance. In the other 

case, when variables were the Real numbers, CLP solver needed more CPU time. 

Table 2 Results for CLP ILOG CPLEX solver 

Optimization of medium optimization task 

Number of variables:    1327 (13 contracts and 50 services) 

CLP problem CPU time [s] number of 

branches 

number of 

failures 

without logic constraints 120.0 216.000 >97.000 

with logic constraints 120.0 214.000 >97.000 

with logic constraint and 

alldifferent (Y[1..3]) 

predicate 

(time not acceptable) 

 

179.000 >70.000 

 

The experiments show that the proper setup of optimization solvers is crucial 

for solving problems efficiently (see (Pytlak & Stecz, 2007) for details). In our 

experiments the presented results show that using CP solver to MIP problems can’t 

guarantee good and acceptable solution. We need 2 stage hybrid algorithm which 

first solves the MIP problem and then try to correct this solution by taking into 

accunt global LP predicate as alldifferent. 

Table 3 Results for CLP ECLiPSe solver  

Optimization of medium problems 

Number of variables:    1620 (10 contracts and 80 services) 
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CLP problem CPU time [s] 

 Search strategy: 

most_constrained 

Search strategy: 

Occurrence 

without logic constraints 23.0 18.85 

with logic constraints 20.85 (time not acceptable) 

with logic constraints 

and alldifferent 

(Y[1..3)]) predicate 

 

(time not acceptable) 

 

(time not acceptable) 

 

If one puts no limits on the number of contracts that can be chosen then CP solver 

searches the tree efficiently. But when we put the limits on the number of contracts 

the solver cannot find a solution in less than 10 minutes. This time is not acceptable. 

Search process (domain search strategy) was set to most_constrained. 

The entries with the smallest domain size were selected. This strategy assumes that 

if several entries have the same domain size, the entry with the largest number 

of attached constraints is selected. Occurrence search strategy selects the entry 

with the largest number of attached constraints. Another good strategy is dbs search 

strategy. The depth bounded search explores the first k choices in the search tree 

completely. After that it switches to another search method.  

Table 4 Results for hybrid ECLiPSe solver 

Optimization of medium problems 

Number of variables:    1620 (10 contracts and 80 services) 

CLP problem CPU time [s] 

 B&B search strategy: 

continue 

B&B search strategy: 

Dichotomic 

with logic constraints 13.0 25.0 

with logic constraints 

and alldifferent (Y[1..3])  

predicate  

39.9 82.0 

 

Presence of the predicate alldifferent causes that the solver hardly finds the solution. 

Some additional logic constraints may help to constrain the search space however 

the global predicates are the most difficult procedures solved by the CLP or hybrid 

solvers. Therefore if the global predicates are not needed they should be omitted. 

4. CONCLUSION 

The paper presents a practical problem of determining an optimal tariff for 

a customer of a mobile telecommunications company. The problem is formulated 

from a customer point of view. Because telecommunication company offers can be 
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complicated the potential client must be able to model these propositions in order 

to choose the tariff with an optimal cost. 

By taking into account the need for modeling complicated problems we used the 

constraint logic programming as a tool for handling constraints such as logical 

constraints. Some modern optimizations solvers were discussed in the paper and 

several optimization problems were solved.  
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