PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of technical condition of valve clearance compensators using vibration measurement and machine learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic development of internal combustion engine design and requirements for high reliability generates the need to apply a strategy of their operation based on the current technical condition. The paper concerns vibration diagnostics of automatic compensators of valve lash of a combustion engine. It presents the course of an active experiment conducted in order to develop a methodology for identifying the state of compensators based on measures of vibration signals measured at the engine head. Based on the results of the experiment, a classifier was developed in the form of a decision tree, which with high accuracy identified the technical condition of the compensators. The set of simple rules obtained thanks to the built up trees allows for easy implementation of the diagnostic system in practice.
Rocznik
Strony
art. no. 2019206
Opis fizyczny
Bibliogr. 37 poz., il. kolor., rys., wykr.
Twórcy
  • Institute of Combustion Engines and Transport, Poznan University of Technology
  • Faculty of Mechanical Engineering and Management, Institute of Applied Mechanics, Poznan University of Technology
Bibliografia
  • 1. G. M. Szymański, F. Tomaszewski, Diagnostics of automatic compensators of valve clearance in combustion engine with the use of vibration signal, Mech. Syst. Signal Process., 68–69 (2016) 479 – 490, doi:10.1016/j.ymssp.2015.07.015.
  • 2. L. Arras, F. Horn, G. Montavon, K.-R. Müller, W. Samek, What is Relevant in a Text Document?, PLoS One., 12 (2016) 1 – 19.
  • 3. D. Dey, B. Chatterjee, S. Dalai, S. Munshi, S. Chakravorti, A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy, IEEE Trans. Dielectr. Electr. Insul., 24 (2017) 3894 – 3897, doi:10.1109/TDEI.2017.006793.
  • 4. F. Fraggetta, G. Salvatore, G. F. Zannoni, L. Pantanowitz, E. D. Rossi, Review of “Digital Pathology” Workdlow: The catan, J. Pathol. Inform., 8 (2017) 1 – 12, doi:10.4103/jpi.jpi.
  • 5. F. Gao, T. Huang, J. Wang, J. Sun, A. Hussain, E. Yang, Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification, Appl. Sci. 7 (2017) 447, doi:10.3390/app7050447.
  • 6. C. Gorges, K. Öztürk, R. Liebich, Impact detection using a machine learning approach and experimental road roughness classification, Mech. Syst. Signal Process., 117 (2019) 738 – 756, doi:https://doi.org/10.1016/j.ymssp.2018.07.043.
  • 7. Y. A. Pachepsky, W. J. Rawls, H. S. Lin, Hydropedology and pedotransfer functions, Geoderma, 131 (2006) 308 – 316, doi:10.1016/j.geoderma.2005.03.012.
  • 8. J. H. Min, Y. C. Lee, Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert Syst. Appl., 28 (2005) 603 – 614, doi:10.1016/j.eswa.2004.12.008.
  • 9. P. K. Wong, J. Zhong, Z. Yang, C. M. Vong, Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis, Neurocomputing, 174 (2016) 331 – 343, doi:https://doi.org/10.1016/j.neucom.2015.02.097.
  • 10. T. T. Nguyen, G. Armitage, A survey of techniques for internet traffic classification using machine learning, IEEE Commun. Surv. Tutorials, 10 (2008) 56 – 76, doi:10.1109/SURV.2008.080406.
  • 11. J. Korbicz, J. M. Kościelny, Z. Kowalczuk, W. Cholewa, eds., Models, Artificial Intelligence, Applications, Springer-Verlag Berlin Heidelberg, 2004, doi:10.1007/978-3-642-18615-8.
  • 12. D. Kateris, D. Moshou, X. E. Pantazi, I. Gravalos, N. Sawalhi, S. Loutridis, A machine learning approach for the condition monitoring of rotating machinery, J. Mech. Sci. Technol., 28 (2014) 61 – 71, doi:10.1007/s12206-013-1102-y.
  • 13. A. Kothuru, S. P. Nooka, R. Liu, Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling, Int. J. Adv. Manuf. Technol., 95 (2018) 3797 – 3808, doi:10.1007/s00170-017-1460-1.
  • 14. M. R. R. Lahrache, A. Cocconcelli, Anomaly detection in a cutting tool by k-means clustering and support vector machines, 18 (2017) 21 – 29.
  • 15. P. Potočnik, E. Govekar, Semi-supervised vibration-based classification and condition monitoring of compressors, Mech. Syst. Signal Process, 93 (2017) 51 – 65, doi: https://doi.org/10.1016/j.ymssp.2017.01.048.
  • 16. M. Ruiz, L. E. Mujica, S. Alférez, L. Acho, C. Tutivén, Y. Vidal, J. Rodellar, F. Pozo, Wind turbine fault detection and classification by means of image texture analysis, Mech. Syst. Signal Process., 107 (2018) 149 – 167, doi: https://doi.org/10.1016/j.ymssp.2017.12.035.
  • 17. F. Jia, Y. Lei, N. Lu, S. Xing, Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization, Mech. Syst. Signal Process., 110 (2018) 349 – 367, doi: https://doi.org/10.1016/j.ymssp.2018.03.025.
  • 18. L. Ren, Y. Sun, H. Wang, L. Zhang, Prediction of bearing remaining useful life with deep convolution neural network, IEEE Access., 6 (2018) 13041 – 13049, doi: 10.1109/ACCESS.2018.2804930.
  • 19. G. Robles, E. Parrado-Hernández, J. Ardila-Rey, J. M. Martínez-Tarifa, Multiple partial discharge source discrimination with multiclass support vector machines, Expert Syst. Appl., 55 (2016) 417 – 428, doi:10.1016/j.eswa.2016.02.014.
  • 20. M. Tabaszewski, Optimization of a nearest neighbors classifier for diagnosis of condition of rolling bearings, Diagnostyka, 15 (2014).
  • 21. V. T. Tran, H. Thom Pham, B. S. Yang, T. Tien Nguyen, Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine, Mech. Syst. Signal Process., 32 (2012) 320 – 330, doi:10.1016/j.ymssp.2012.02.015.
  • 22. T. Van Tran, B. S. Yang, Machine fault diagnosis and condition prognosis using classification and regression trees and neuro-fuzzy inference systems, Control Cybern., 39 (2010) 25 – 54.
  • 23. F. Q. Yuan, Critical issues of applying machine learning to condition monitoring for failure diagnosis, IEEE Int. Conf. Ind. Eng. Eng. Manag., 2016-Decem, (2016) 1903 – 1907, doi:10.1109/IEEM.2016.7798209.
  • 24. J. Zhi-qiang, F. Hang-guang, L. Ling-jun, Support Vector Machine for mechanical faults classification, J. Zhejiang Univ. A., 6 (2005) 433 – 439, doi: 10.1631/jzus.2005.a0433.
  • 25. C. Sobie, C. Freitas, M. Nicolai, Simulation-driven machine learning: Bearing fault classification, Mech. Syst. Signal Process., 99 (2018) 403 – 419, doi: https://doi.org/10.1016/j.ymssp.2017.06.025.
  • 26. F. Feng, A. Si, H. Zhang, Research on fault diagnosis of diesel engine based on bispectrum analysis and genetic neural network, Procedia Eng., 15 (2011) 2454 – 2458, doi: 10.1016/j.proeng.2011.08.461.
  • 27. J. Liu, X. Li, X. Zhang, S. Xu, L. Dong, Misfire diagnosis of diesel engine based on rough set and Neural Network, Procedia Eng., 16 (2011) 224 – 229, doi:10.1016/j.proeng.2011.08.1076.
  • 28. J. Porteiro, J. Collazo, D. Patiño, J. L. Míguez, Diesel engine condition monitoring using a multi-net neural network system with nonintrusive sensors, Appl. Therm. Eng., 31 (2011) 4097 – 4105, doi:10.1016/j.applthermaleng.2011.08.020.
  • 29. D. T. Larose, Discovering Knowledge in Data, An Introduction to DATA MINING, 2005.
  • 30. D. T. Larose, Data Mining Methods and Models, John Wiley & Sons, Inc., New York, NY, USA, 2007.
  • 31. O. Maimon, L. Rokach, eds., Mining and Knowledge Discovery Handbook, Springer New York Dordrecht Heidelberg London, 2010.
  • 32. A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, O’Reilly Media, 2017.
  • 33. C. Cempel, Modern issues of methodology and research philosophy, Instytut Technologii Eksploatacji, Radom, 2003.
  • 34. W. Matzke, Four-stroke engine timing, WKiŁ, Warszawa, 1967.
  • 35. T. R. Serridge, M. Licht, Piezoelectric accelerometers and vibration preamplifiers, Brüel & Kjær, 1987.
  • 36. S. Nizinski, R. Michalski, Diagnostics of technical objects, Library for Problems of Operation Polish Society for Technical Diagnostics, Department of Vehicle and Machine Operation, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Institute for Sustainable Technologies in Radom, 2002.
  • 37. A. Lahrache, M. Cocconcelli, R. Rubini. Anomaly detection in a cutting tool by KMeans clustering and Support Vector Machines, Diagnostyka, 18(3) (2017) 21 – 29.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0948593-b6b0-458f-b62c-36afa1d5b9a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.